Читаем ЛОГИКА полностью

§ 25. Общеотрицательное суждение преобразуется посредством противопоставления предикату в частноутвердительное суждение. Рассмотрим, например, суждение «ни один паук не есть насекомое». Какое высказывание может быть получено из него относительно «не-насекомых»? Очевидно, таким высказыванием будет: «некоторые не-насекомые — пауки». И действительно, преобразуемое суждение устанавливает, что внутри логического класса «насекомых» не может быть ни одной части логического класса «пауков». Но это значит, что из числа животных, которые не являются насекомыми, некоторые принадлежат к паукам (см. рис. 31).

Рис. 31

На этом рисунке круг F представляет весь объём логического класса членистоногих, куда входят как соподчинённые ему объёмы логического класса «пауков» (S) и логического класса «насекомых»(Р).

Из рисунка видно, что ни один паук не есть насекомое. Именно этот смысл выражает суждение до преобразования. На этом же рисунке «не-насекомые» представлены всей той частью круга F, которая находится вне круга Р. Из рисунка видно, что некоторые не-Р будут S, т. е. что некоторые из этих не-насекомых будут пауками. Именно это выражает та форма суждения, которая получается в результате преобразования посредством противопоставления предикату.

§ 26. Частноотрицательное суждение преобразуется посредством противопоставления предикату в частноутвердительное суждение. Рассмотрим, например, частноотрицательное суждение «некоторые летательные машины не принадлежат к числу самолётов». Зададимся вопросом: какое высказывание может быть получено из него относительно понятия, противоречащего предикату? Так как предикатом суждения является понятие «самолёты», то противоречащим ему понятием будет, очевидно, понятие «не-самолёты».Что же можно высказать об этом понятии? Очевидно то, что «некоторые не-самолёты принадлежат к числу летательных машин» (см. рис. 32).

Рис. 32

Из рисунка видно, что объём самолётов (круг Р) составляет часть объёма летательных машин (круг S). Этот же рисунок показывает, что некоторые летательные машины не принадлежат к числу самолётов. Именно этот смысл выражает форма суждения до преобразования. Часть объёма летательных машин, которая не принадлежит к объёму самолётов, представлена на рисунке заштрихованной частью круга S, т. е. частью круга S, лежащей вне круга Р.

Этот же рисунок показывает, что объём не-самолётов, как объём всякого противоречащего понятия, изображается всей неопределённо простирающейся во все стороны вне круга Р плоскостью.

Из рисунка видно, что в состав этой плоскости входит заштрихованная часть плоскости круга S, лежащая вне круга Р. Но именно это и выражает форма суждения, получившаяся в результате преобразования посредством противопоставления предикату: «некоторые не-самолёты принадлежат к числу летательных машин». Общая форма таких суждений: «некоторые не-Р принадлежат к S».

§ 27. Нетрудно убедиться, что каждое из полученных правил преобразования суждений посредством противопоставления предикату соответствует определённому правилу обращения. При обращении, например, общеутвердительного суждения получается частноутвердительное суждение. Преобразованию посредством противопоставления предикату, очевидно, соответствует преобразование общеотрицательного суждения в частноутвердительное.

И точно так же правилу, по которому частноотрицательное суждение обычно не обращается, очевидно, соответствует правило о том, что при преобразовании посредством противопоставления предикату частноутвердительное суждение обычно не преобразуется.

В том, что существует соответствие между правилами обращения и правилами преобразования посредством противопоставления предикату, нет ничего удивительного. И действительно: при преобразовании посредством противопоставления предикату всегда получается высказывание относительно понятия, противоречащего предикату. Отсюда ясно, что каждому случаю обращения должен соответствовать некоторый определённый случай преобразования посредством противопоставления предикату.

Противопоставление предикату является соединением превращения с обращением. Чтобы произвести противопоставление, сначала производится превращение, а затем превращённое суждение обращается.

§ 28. Рассматривая превращение, мы ясно видим, что при операциях над суждением наша мысль, так же как и при операциях над понятием и выводом, опирается на законы тождества, противоречия, исключённого третьего и достаточного основания.

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
1. Объективная диалектика.
1. Объективная диалектика.

МатериалистическаяДИАЛЕКТИКАв пяти томахПод общей редакцией Ф. В. Константинова, В. Г. МараховаЧлены редколлегии:Ф. Ф. Вяккерев, В. Г. Иванов, М. Я. Корнеев, В. П. Петленко, Н. В. Пилипенко, Д. И. Попов, В. П. Рожин, А. А. Федосеев, Б. А. Чагин, В. В. ШелягОбъективная диалектикатом 1Ответственный редактор тома Ф. Ф. ВяккеревРедакторы введения и первой части В. П. Бранский, В. В. ИльинРедакторы второй части Ф. Ф. Вяккерев, Б. В. АхлибининскийМОСКВА «МЫСЛЬ» 1981РЕДАКЦИИ ФИЛОСОФСКОЙ ЛИТЕРАТУРЫКнига написана авторским коллективом:предисловие — Ф. В. Константиновым, В. Г. Мараховым; введение: § 1, 3, 5 — В. П. Бранским; § 2 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 4 — В. П. Бранским, В. В. Ильиным, А. С. Карминым; § 6 — В. П. Бранским, Г. М. Елфимовым; глава I: § 1 — В. В. Ильиным; § 2 — А. С. Карминым, В. И. Свидерским; глава II — В. П. Бранским; г л а в а III: § 1 — В. В. Ильиным; § 2 — С. Ш. Авалиани, Б. Т. Алексеевым, А. М. Мостепаненко, В. И. Свидерским; глава IV: § 1 — В. В. Ильиным, И. 3. Налетовым; § 2 — В. В. Ильиным; § 3 — В. П. Бранским, В. В. Ильиным; § 4 — В. П. Бранским, В. В. Ильиным, Л. П. Шарыпиным; глава V: § 1 — Б. В. Ахлибининским, Ф. Ф. Вяккеревым; § 2 — А. С. Мамзиным, В. П. Рожиным; § 3 — Э. И. Колчинским; глава VI: § 1, 2, 4 — Б. В. Ахлибининским; § 3 — А. А. Корольковым; глава VII: § 1 — Ф. Ф. Вяккеревым; § 2 — Ф. Ф. Вяккеревым; В. Г. Мараховым; § 3 — Ф. Ф. Вяккеревым, Л. Н. Ляховой, В. А. Кайдаловым; глава VIII: § 1 — Ю. А. Хариным; § 2, 3, 4 — Р. В. Жердевым, А. М. Миклиным.

Александр Аркадьевич Корольков , Арнольд Михайлович Миклин , Виктор Васильевич Ильин , Фёдор Фёдорович Вяккерев , Юрий Андреевич Харин

Философия