Вот теперь обсудим тонкие места. Мы воспользовались тем, что на второй минуте третий и второй мудрецы еще не могли определить цвет своего колпака. А вдруг могли, просто мы не настолько мудры, чтобы понять, как именно? К счастью, даже если бы и могли, на ответ это бы не повлияло. Ведь это значило бы просто, что все мудрецы в белых колпаках определили их цвет на минуту раньше, чем мы думаем. Ну и прекрасно: определили же! Заметим также, что если мудрецы в красных и синем колпаках тоже могли бы как-то определить цвета своих колпаков раньше, чем описано в нашем решении, это по аналогичной причине не повлияло бы на ответ: «белые» мудрецы в своих размышлениях не используют сидение на месте «красных» и «синего», а «красные» – сидение «синего».
Д53. Если у одного из мудрецов нечетное число, то он сразу скажет: «Я знаю твое число». Поэтому первое утверждение «Я не знаю твоего числа» следует понимать как «Мое число четное».
Если число второго мудреца не кратно четырем, то он из этого сделает вывод, что у первого мудреца число вдвое больше, и определит его. Иначе он тоже скажет: «Я не знаю твоего числа», что будет означать «Мое число кратно четырем».
Если число первого мудреца не кратно 8, то он сможет определить число партнера, умножив на 2 свое число. Иначе он тоже скажет: «Я не знаю твоего числа», что будет означать «Мое число кратно восьми» и т. д.
Поскольку числа, данные мудрецам, не могут делиться на сколь угодно большую степень двойки, рано или поздно этот процесс прекратится.
Д54. Подсказка. Чтобы лучше разобраться в этой довольно сложной задаче, решим для начала аналогичную для трех мудрецов и чисел от 1 до 10. Пусть палач обошел всех по три раза, а в начале четвертого обхода первый мудрец сказал, что наибольшее число у него.
Запишем по порядку утверждения про числа, соответствующие высказываниям мудрецов.
1 мудрец: «У меня не 10».
2 мудрец: «У меня не 10».
3 мудрец: «У меня не 10 и не 9».
1 мудрец: «У меня не 9».
2 мудрец: «У меня не 9 и не 8».
3 мудрец: «У меня не 8».
1 мудрец: «У меня не 8 и не 7».
2 мудрец: «У меня не 7».
3 мудрец: «У меня не 7 и не 6».
1 мудрец: «У меня 6, и это самое большое число».
Решение. До того, как первый мудрец сказал, что его число максимальное, мудрецы успели сделать 1000 высказываний. В первых 9 утверждалось только, что у соответствующего мудреца не 1000, в следующих 9 – что не 999 (при этом в первом из этих следующих дополнительно утверждалось, что и не 1000), в следующих 9 – что не 998 (при этом в первом из этих следующих дополнительно утверждалось, что и не 999). Разделим 1000 на 9, получим в частном 111 и в остатке 1. Это означает, что в 999-м высказывании девятый мудрец утверждал, что у него не 890, в 1000-м десятый мудрец сообщил, что у него не 890 и не 889. До этого остальные уже успели сказать, что у них не 890. Поскольку этого как раз хватило первому мудрецу, чтобы понять, что его число – максимальное, этим числом было 889.
Ответ. 889.
Д55. Какие выводы можно сделать из первой фразы А? Во-первых, известное ему произведение P не является произведением двух простых чисел
Есть только два числа, соответствующие первой фразе А: 24 и 28.
24 = 1– 2-12 = 1– 3–8 = 1– 4–6 = 2– 3–4 (суммы соответственно 15, 12, 11 и 9);
28 = 1– 2-14 = 1– 4–7 (суммы соответственно 17 и 12).
Ответ Б «Я все равно не знаю их» означает, что известная ему сумма встречается среди этих вариантов более одного раза, т. е. равна 12. Если А сообщили число 24, то он сделает вывод, что задуманы числа 1, 3 и 8. А если ему сообщили число 28, то он поймет, что задуманы числа 1, 4 и 7.
Д56. Зная номера троих других