Читаем Логика случая. О природе и происхождении биологической эволюции полностью

История поиска особенностей геномов, коррелирующих с экстремальной устойчивостью к радиации и высыханию, может быть даже более показательна. Некоторые бактерии и археи, лучше всего из которых описана бактерия Deinococcus radiodurans, демонстрируют сопротивляемость экстремальному уровню радиации, что, как считается, является побочным эффектом их адаптации к высыханию. Всесторонний анализ генома D. radiodurans напрямую не выявил никаких уникальных признаков генома или систем репарации ДНК, которые могли бы объяснить исключительную способность этих организмов переносить повреждения, вызываемые радиацией, хотя были идентифицированы гомологи белков растений, использующиеся для повышения сопротивляемости высыханию и в то же время не обнаруженные ни у каких других бактерий (Cox and Battista, 2005; Makarova et al., 2001a). Deinococcus radiodurans является популярной экспериментальной моделью, поэтому для описания реакции этой бактерии на высокие дозы облучения впоследствии были предприняты исследования процессов транскрипции и особенностей состава ее белков. Эти исследования возбудили определенный интерес, так как было зафиксировано существенное увеличение экспрессии некоторых экспериментально не исследованных генов, кодирующих белки с предсказанной ролью в процессах, потенциально связанных с радиационной устойчивостью, таких как репарация двойных разрывов в молекулах ДНК (Liu et al., 2003). Однако нокаут этих генов не повлиял на сопротивляемость радиации, в то время как нокаут нескольких других генов, которые не кодируют никаких известных доменов и не экспрессируются на повышенном уровне при облучении, делал организм чувствительным к радиации (Blasius et al., 2008; Cox and Battista, 2005; Makarova et al., 2007a). Сравнительный анализ двух родственных устойчивых к радиации бактерий D. radiodurans и D. geothermalis не только не смог разрешить проблему геномных особенностей, определяющих устойчивость к радиации, но даже еще более запутал ее (Makarova et al., 2007a). Никаких генов, имеющих явное отношение к сопротивляемости радиации, которые бы были уникальными для этих устойчивых бактерий, открыто не было. Более того, ортологи многих генов D. radiodurans, экспрессия которых усиливается в условиях повышенной радиации, попросту отсутствуют у D. geothermalis. Тщательное сравнение структуры оперонов и предполагаемых регуляторных областей в двух геномах Deinococcus позволило предсказать регулон, ответственный за устойчивость к радиации (Makarova et al., 2007a). Однако роль большинства генов, составляющих этот предсказанный регулон, в обеспечении устойчивости к радиации и высыханию остается невыясненной. Главные свойства генома, определяющие устойчивость к радиации, по-прежнему неуловимы, и растет количество свидетельств, демонстрирующих, что важная роль при этом принадлежит генам, которые повышают устойчивость неожиданными косвенными способами, такими как регулирование внутриклеточной концентрации двухвалентных катионов, оказывающих влияние на степень разрушения белков, вызванного облучением или высыханием (Daly, 2009).

Рис. 5–8. Неизоморфное, многозначное отображение геномного и функционального пространств.

Единственный вывод, который можно сделать в рамках текущего состояния дел по поводу связей между геномом и фенотипом у прокариот, заключается в том, что эти связи являются многогранными, и конкретные наборы генов, ответственных за формирование сложных фенотипов, идентифицировать непросто, несмотря на существование явных генов-сигнатур, связанных с определенными стилями жизни (такими как обратная гираза в случае гипертермофильности). Сложность соотношения геном – фенотип может быть представлена в виде неизоморфного многозначного отображения между геномным и функциональным пространствами прокариот (Koonin and Wolf, 2008b). Каждый ген плейотропен (связан с множеством функций), и каждая функция мультигенна (связана со многими генами; см. рис. 5–8). Мы пришли к этому важному выводу при анализе геномов прокариот, но, без сомнения, он отражает общее правило отсутствия детерминизма при отображении генотип – фенотип (см. гл. 13).

<p>Археи и бактерии в свете сравнительной геномики: как же быть с прокариотами?</p>
Перейти на страницу:

Похожие книги

Взаимопомощь как фактор эволюции
Взаимопомощь как фактор эволюции

Труд известного теоретика и организатора анархизма Петра Алексеевича Кропоткина. После 1917 года печатался лишь фрагментарно в нескольких сборниках, в частности, в книге "Анархия".В области биологии идеи Кропоткина о взаимопомощи как факторе эволюции, об отсутствии внутривидовой борьбы представляли собой развитие одного из важных направлений дарвинизма. Свое учение о взаимной помощи и поддержке, об отсутствии внутривидовой борьбы Кропоткин перенес и на общественную жизнь. Наряду с этим он признавал, что как биологическая, так и социальная жизнь проникнута началом борьбы. Но социальная борьба плодотворна и прогрессивна только тогда, когда она помогает возникновению новых форм, основанных на принципах справедливости и солидарности. Сформулированный ученым закон взаимной помощи лег в основу его этического учения, которое он развил в своем незавершенном труде "Этика".

Петр Алексеевич Кропоткин

Культурология / Биология, биофизика, биохимия / Политика / Биология / Образование и наука
Мозг и разум в эпоху виртуальной реальности
Мозг и разум в эпоху виртуальной реальности

Со Ёсон – южнокорейский ученый, доктор наук, специалист в области изучения немецкого языка и литературы, главный редактор издательства Корейского общества Бертольда Брехта, исследующий связи различных дисциплин от театрального искусства до нейробиологии.Легко ли поверить, что Аристотель и научно-фантастический фильм «Матрица» проходят красной нитью через современную науку о мозге и философию Спинозы, объясняя взаимоотношения мозга и разума?Как же связаны между собой головной мозг, который называют колыбелью сознания, и разум, на который как раз и направлена деятельность сознания?Можно ли феномен разума, который считается решающим фактором человеческого развития, отличает людей от животных, объяснить только электрохимической активностью нейронов в головном мозге?Эта книга посвящена рассмотрению подобных фундаментальных вопросов и объединяет несколько научных дисциплин, которые развились в ходе напряженных споров о соотношении материи и разума, которые берут своё начало с древних времен и продолжаются по сей день. Данная работа не является простым цитированием ранее написанных исследований, направленным на защиту своей позиции, она подчеркивает необходимость появления нового исследования мозга, которое должно будет вобрать в себя как философские умозаключения, так и научную доказательную базу.В формате PDF A4 сохранен издательский макет.

Со Ёсон

Биология, биофизика, биохимия