Читаем Магия чисел. Математическая мысль от Пифагора до наших дней полностью

Кант был уверен, что геометрия состоит из положений (декларативных суждений), которые не зависят от опыта (являются априорными), необходимо справедливых (аподиктичных) и которые содержат фактический материал (то есть синтетичны). Что таких положений нет в математике (или где-либо еще, насколько это известно человечеству) – одно из простейших заключений математической логики наших дней. Ошибка Канта произошла от его непонимания разницы двух абсолютно разных вещей. Читатель придет в замешательство от бесплодной борьбы Канта за объяснение обоих вещей одновременно и одними и теми же словами, если не поймет, что он говорит не об одном понятии, а сразу о двух. Его пара – «физическая геометрия» и «математическая геометрия».

Физическая геометрия в своем прикладном варианте только отчасти эмпирическая наука, созданная затем, чтобы дать связное описание мира чувственного (и научного) опыта. Математическая геометрия – это система постулатов и дедуктивных выводов из них, созданная безотносительно к чувственному опыту или намеренно соотнесенная с ним. Как определяет одна из современных школ математической философии, в математической геометрии «истина» представляется как устойчивая логическая последовательность (свобода от противоречий внутри системы), в физической геометрии «истина» включает приближенное соответствие с наблюдаемым феноменом. Досконально проанализированные предположения математической геометрии «истинны» просто как форма логических предположений. Такие предположения именуются «аналитическими», например: «Сейчас идет дождь» или «Сейчас не идет дождь». Но «Сейчас идет дождь» либо конкретно «фактически истинно», либо «фактически ложно», и какое оно, можно определить, выглянув на улицу. Это предположение имеет фактическое содержание. А первое его не имеет, поскольку ничто не говорит о фактической погоде.

Отличие физической и математической геометрии можно проиллюстрировать неудачным примером Канта в его третьем общем выводе, процитированном выше. Если «прямая линия» определена четко, из этого не следует, что через две точки можно провести единственную прямую ни в математической, ни в физической геометрии. Определение Евклида гласит: «Прямая линия – это линия, которая ровно соединяет крайние точки». И, судя по всему, Кант мог иметь в виду именно это нечеткое интуитивное понятие. После минутного раздумья понимаем, что предполагаемое определение Евклида ничего не определяет вообще. Как часто указывают в школьных геометриях: «Прямая линия есть кратчайшее расстояние между двумя точками». Это определение интуитивно удовлетворительно и полезно, а данное чуть позднее «точке» и «расстоянию» – дается ясное численное определение. Чтобы избежать загадок там, где ничего таинственного нет, «прямая линия» заменяется на «геодезическую». Геодезическая в «пространстве» может быть малым и большим расстоянием между двумя точками в пространстве. (Это достаточно близко к четкому математическому определению для конкретных целей этой книги.) Если пространство рассматривать как поверхность сферы (не то, что поверхность включает, а ее саму), диаметрально противоположные точки могут быть соединены бесконечным множеством таких геодезических прямых (дугами больших окружностей на сфере). «Случайности восприятия», на которые намекает Кант, кажется, создают для него иллюзию, что Земля плоская. Его второй пример: «никакое пространство еще не найдено, кроме трехмерного» – очень давно потерял смысл вместе с появлением возможности строить пространство любой размерности. Наиболее известен пример пространства, имеющего более трех измерений, – полезное в научном плане четырехмерное пространство из теории относительности.

То, что Кант воспел евклидову геометрию как единственно верную истину, оказалось неудачным для продвижения его метафизики. Следствием создания неевклидовых геометрий стало разграничение математической и физической геометрий. Каждая из этих геометрий, в том числе геометрия Евклида, когда устранены очевидные недостатки, самосогласованна, и они не конкурируют между собой. Каждая математически «истинна». А которая физически «истинна»? Как оказалось, для научных задач применение нескольких геометрий вполне разумно и достаточно, но иногда отдельная геометрия полезнее всех остальных для решения конкретной задачи. Каждая «истинна», то есть самосогласованна в абстрактном, логическом или математическом смысле, одна из нескольких «истинна» в физическом смысле для определенного набора задач, но, будучи не согласованы между собой, две не могут быть истинны для того же круга задач. Когда во всем этом разобрались, в начале 1900-х годов, отдельные ученые и математики совместили понятие «истины» с применимостью. Но не было никакой необходимости вносить очередную путаницу в область, из которой наконец-то, после почти двух тысяч лет неверного толкования, была исключена путаница.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг