Читаем Магия чисел. Математическая мысль от Пифагора до наших дней полностью

Из отдельных деталей эпистемологической теории судьба 137, возможно, наиболее интересна. Эта тонкоструктурная константа была предметом многих экспериментальных определений (как прямых, так косвенных) прежде, чем Эддингтон взялся получить ее из эпистемологических рассуждений. Он получил результат 137 в качестве числового значения этой константы, но знаменательно разнящийся с результатами, полученными экспериментально. Несоответствие между теорией и наблюдением было слишком малым, чтобы счесть это более чем случайным совпадением. Кто-то из компетентных экспериментаторов повторил свою работу с дотошной тщательностью, кто-то изобрел и применил новые методы проверки 137. Пока теория не предсказала, что константа должна быть целым числом, и заявила 137 как целое число, никто и не подозревал, что константа могла быть целым числом. Пифагор подсказал бы экспериментаторам, что их результаты ограничатся целым числом, когда они научатся точным измерениям. Так и случилось. К 1942 году было общепризнано, что число 137 верно.

Выстоит ли эпистемологическая теория в той или иной форме, останется ли она неизменной, или претерпит изменения, или сдаст окончательно свои позиции, число 137 всегда будет делать ей честь. Теория освобождается от своих научных обязательств, когда она провоцирует новую экспериментальную работу большой научной ценности по любому признанному стандарту. То, что предсказание было выверено, могло оказаться лишь удачным совпадением. Но раз уж тому суждено случиться, это не умаляет положительное достижение. И не в первый раз в истории науки, когда ошибка одного человека стоила больше, чем правота другого.

Когда новый пифагореизм впервые появился в 1920 году, он игнорировался всеми (кроме нескольких физиков) как безобидная мистика, не представляющая никакого значения для науки. К 1937 году пифагореизм собрал уже столько последователей среди тех, кто уже был отмечен за свои успешные научные достижения, что их нельзя было уже игнорировать. Пришло время достоверно убедиться, какова она, эта «эпистемология», предназначенная для традиций Галилея и Ньютона. Представители и старого и нового согласились на дебаты, чтобы научная публика узнала, за что выступает каждая сторона, и получила возможность сформировать собственное мнение. Все участники были признанными учеными и имели право ссылаться на свой авторитет. В качестве прощальной дани уважения к Учителю мы предлагаем несколько из наиболее интересных мнений.

Дебаты открыл астроном-теоретик Эдуард Артур Милн, автор знаменитого «Космологического принципа», который он предложил в качестве замены теории относительности Эйнштейна. Согласно Милну, «получить законы динамики можно рационально… не прибегая к опытам». Как мы помним, эти законы составляют основу физики, согласно Галилею и Ньютону, которые вывели их индуктивным методом из опытов.

Выдающийся астрофизик и философ физики Герберт Дингл возглавлял противоположную сторону. «Для аристотелианцев [ошибка, для платоновых пифагорейцев] человеческий ум имел сверхчувствительное знание принципов, которым повиновалась природа, или, как альтернативный вариант, разум был способен отдельно от органов чувств диктовать течение опыта; для Галилея природа была независима, и ум мог лишь наблюдать и пробовать описать в общих выражениях процессы, в ней происходящие, кроме того, разуму было дано стремиться коррелировать результаты чувственного отражения в логическую систему». В отличие от них новый пифагореизм возвеличивает «космолатрию – культ, в котором «Вселенная» – это божество [которое] выше наблюдения и не может быть получено только из наблюдения; она господствует там, где бессилен опыт. Эта космолатрия, как стоило ожидать, выведена метафизикой из математики… Таким образом, мы встречаем среди широкой публики смутную веру, что физика есть учение о Вселенной, а в научном мире массовые публикации бесхребетной риторики, нелогичность которой затенена дымовой завесой математических символов».

Язык участников дебатов должен был неизбежно стать даже еще проще. Время от времени снисходительная ремарка, какую и сам Пифагор мог бы вставить, возвращала спор на безличный уровень, общепринятый в современных научных дискуссиях. Следует процитировать одну такую реплику Поля Адриена Дирака, одного из создателей новейшей квантовой теории, как образчик того, что эпистемологически достижимо. Число 1039 – это единица с 39 нулями. «Мы можем принять за общий принцип, – утверждал Дирак, – что все большие числа порядка 1039, такие как 2 × 1039, 3 × 1039…, обращаясь к общей физической теории, не говоря уж о простых числовых коэффициентах, равны t, t × t…, где t есть современная эпоха, выраженная в атомных единицах. Простые числовые коэффициенты, встречающиеся здесь, должны быть детерминированы теоретически, когда мы имеем всестороннюю теорию космологии и атомарности. Таким образом, мы избегаем потребности в теории для детерминирования чисел порядка 1039».

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг