Читаем Магия чисел. Математическая мысль от Пифагора до наших дней полностью

Иррациональность квадратного корня из двух была сформулирована как «диагональ и сторона квадрата несоизмеримы». Но для придания безукоризненности своим логическим рассуждениям Евдокс и его преемники вынуждены были от математически конечного перейти к математически бесконечному и от исчисляемого к неисчислимому. Были ли их логические построения обнаружены, или они их придумали? И было ли понятие бесконечного изобретением человека, или действительно это было открытие чего-то, что существовало еще до того, как наша планета достаточно остыла, чтобы на ней могла существовать жизнь, что продолжит существовать и тогда, когда на Земле исчезнет жизнь?

Какими бы ни были ответы на эти вопросы (если это не риторические вопросы и на них действительно существуют ответы), одно является бесспорным: открытие, связанное с диагональю квадрата со сторонами, выраженными рациональными числами, оказалось роковым для азбучного обобщения, которое сводило мироздание до рациональных чисел. В числовом смысле вселенная проявила себя иррациональной. (К несчастью, термин «иррациональный» имеет два общепринятых значения, уместные при обсуждении философии Пифагора. Когда «иррационально» используется в смысле «противоположный разумному», это означает отрицательную оценку; когда «иррационально» относится к числам, это означает «в числовой форме иррациональный».) Вплоть до нашего времени почтенные ученые не позволяли себе подвергать сомнению традиционную точку зрения относительно рациональности «законов» природы. Мы еще остановимся на этом, когда дойдем до рассказа о последнем величайшем предвидении Пифагора, в котором он пробрался через ад своего собственного воображения. Здесь же достаточно только отметить, что подобное сомнение неявно в вопросах относительно рациональности логики, применяемой для рационального объяснения числовой нелогичности некоторых чисел.

В конце XIX столетия было доказано, что если иррациональные числа существуют или могут быть созданы, то они значительно чаще встречаются, нежели рациональные числа. Но это роковое развенчание рациональности чисел не слишком повлияло на современную нумерологию, впрочем, как и сравнительно мягкая революция VI столетия до н. э. на нумерологию пифагорейцев. Античные пифагорейцы и их преемники продолжали теоретизировать, принимая как данное, что вселенная рациональна и существуют лишь простые целые числа. Опыт был бессилен противостоять положениям, утвержденным нумерологами.

Мистика чисел начиналась и заканчивалась в неосязаемых лабиринтах сознания. За пределами возможностей любого объективного научного исследования она существовала и продолжает существовать. Возможно, в этом и заложен секрет очевидной неуничтожимости нумерологии.

Остается только обозначить роль Пифагора в этом ниспровергающем открытии. Некоторые признанные авторитеты среди историков древнегреческой математики не видят никаких причин сомневаться, что именно Пифагор сделал роковое открытие, и подкрепляют свое мнение древними преданиями.

Некоторые легенды, которым можно верить или не верить по нашему усмотрению, утверждают, будто, когда Пифагор сделал это открытие, члены братства поклялись сохранить все в тайне. Одна из легенд гласит, будто какого-то непокорного сподвижника, разгласившего ужасную тайну непосвященной толпе, утопили. Звучит совсем неправдоподобно, поскольку зачем же топить человека после того, как он уже разгласил правду? Кроме того, пифагорейцы питали отвращение к насильственному лишению жизни, человеческой либо любой другой.

В целом вполне допустимо полагать, что Пифагор припрятал нежелательное открытие до лучших времен и продолжил величественно шествовать через пространство, числа и время, словно ничего неприятного и не случилось. Так или иначе, но он, его братья и сестры, в усердном следовании за числами к знаниям и мудрости, продолжили жить в мире и гармонии в Кротоне, в то время как сибариты, развлекаясь, двигались по пути почти полной потери боеспособности. Ничего не понимавший ни в числах, ни в метафизике Милон тем не менее одобрял попытки Пифагора научить этим таинствам его товарищей аристократов. Скорее всего, Милон даже открыл для себя, что нет ничего лучше доброй дозы арифметики, чтобы озадачить политических зануд настолько, чтобы они держались подальше от армии и не раздражали ее своей глупостью.

<p>Глава 12</p><p>Гармония и дисгармония</p>

Двадцать три года протекли так тихо, спокойно в мирном Кротоне, что Пифагор и его ученики едва ли заметили, как летит время. Пока Милон и его мастера военного дела муштровали молодежь в строгости военных дисциплин, Пифагор гонял взад-вперед своих последователей по излишествам умственной деятельности. У них тоже дисциплина была на высоте.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг