Читаем Магия чисел. Математическая мысль от Пифагора до наших дней полностью

Если сказанное кажется полностью лишенным смысла для создания рациональной системы мира, то можно смягчить грубость любого порицания обращением к аналогии с современной физикой, нам же следует вернуться к естествознанию наших предков. Рассматривая каждый из нескольких прогрессивных научных трудов по разным направлениям классической физики: механики, теплопроводности, акустики, оптики, электричеству и магнетизму, замечаем, что два и более из них содержат как минимум одну пару практически идентичных равенств. Исключением могут являться буквы, которыми они записаны. Теперь, если конкретное равенство появляется, скажем, как в теории электромагнетизма, так и в теории упругости, данный феномен электромагнетизма может быть описан на языке эластичности, с которым, возможно, мы лучше знакомы. Или если равенства, суммирующие вибрации эластичного твердого тела, появляются в теории света, то можно описать свет как вибрацию гипотетического эластичного материала и назвать этот материал универсальным эфиром. Следуя этой логике, можно даже убедить самих себя в том, что этот эфир существует по-настоящему, как и осязаемый кусок сапожной ваксы. Все это в значительной степени тривиально. Но вера, которая это породила, не является ни тривиальной, ни устаревшей. Она живее и плодороднее в плане новых знаний, чем когда-либо в прошлом, и, как и во времена Пифагора, продолжает предсказывать как проверяемый факт, так и не подлежащий проверке миф. Такая вера – просто убеждение, что возможно до определенной малой степени предсказывать знания и предвидеть будущее материального мира. Древняя магия утверждала, что в состоянии это сделать, но никогда не делала. Менее древняя астрономия достигла значительных успехов. Современная наука имела больше успехов, чем поражений, в своих наиболее успешно развивающихся областях, в частности в физике, астрономии, генетике, и в достижении результатов, как успешных, так и разгромных, математические умозаключения сыграли впечатляющую роль.

Подчас, как в теории относительности, так и в современной квантовой теории, успешные предсказания удивляют даже людей, сделавших их. Когда-то успешность предсказания подтвердило открытие планеты Нептун в 1846 году, ставшее результатом математического анализа орбиты Урана. Математики подсказали астрономам, где искать новую планету, и она была найдена. Событие стало триумфом математики и закона всемирного тяготения Ньютона. Нумерология в теории Пифагора о Солнечной системе предсказала существование Антипода, который, разумеется, нельзя было рассмотреть на небесах и никогда не найти в будущем. Но вера, побудившая на предсказание, была той же, что и в случае с Нептуном. Недавний пример (1918) подобной веры в предсказании столь же ошибочен, как и в случае с Антиподом: красивая и разумная модификация основной теории относительности позволила предсказать, что атомы химических элементов должны обладать схожими характеристиками. Наблюдаемое отсутствие указанных характеристик отнесло предсказание в ту же категорию, как и у Антипода. При наличии подобных параллелей между естествознанием прошлого и естествознанием настоящего, порождающих глубокие тайны, необходимо рассмотреть несколько примеров «сущего» в пифагорейском «Все сущее есть число». Если какой-нибудь современный ученый ожидает или надеется на симпатии со стороны своих коллег в следующем столетии, то не станет презирать коллегу за преждевременную попытку (не забывайте, предпринятую двадцать пять веков тому назад) дать рациональное объяснение космосу, а проявит учтивость и удивительную толерантность.

Сердцем и умом пифагорейского космоса были декады и тетрады. Декады состояли из первых десяти натуральных чисел 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, а тетрады – из первых четырех 1, 2, 3, 4.

Можно подчеркнуть вначале, что 1 иногда означала достоинство быть числом вообще. Но когда некие значительные обобщения требовали от 1 стать числом, дабы избежать вызывающих раздражение противоречий, 1 на время становилась таким же числом, что и остальные.

Хотя этот двойственный подход лишил 1 некоторых нумерологических привилегий, недостаток вполне можно было компенсировать приписыванием дополнительных полномочий, которых нет ни у одного из других чисел.

Поскольку 1 очевидно является автором и прародителем как тетрад, так и декад: 2 = 1 + 1; 3 = 2 + 1 = 1 + 1 + 1 и так далее, такая 1 может быть идентифицирована как универсальная и всемогущая Единица – создатель всего сущего, когда становится ясно, что все во вселенной создано, или выражено, в декадах. Следует признать неопровержимость данной логики.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг