Читаем Магия чисел. Математическая мысль от Пифагора до наших дней полностью

В действительности из тетрад достаточно получить столько, сколько может быть задумано, поскольку тетрады порождают или создают декады: 2 = 1 + 1; 3 = 1 + 2; 4 = = 2 × 2; 5 = 2 + 3; 6 = 2 × 3; 7 = 3 + 4; 8 = 2 × 4 = 2 × 2 × 2; 9 = 3 × 3; 10 = 1 + 2 + 3 + 4. Представлены только некоторые из всего множества различных декад. Выбранные декады самые важные для пифагорейцев. Другими столь же значимыми были: 5 = 2 + 1 + 2; 7 = 3 + 1 + 3; 9 = 4 + 1 + 4, где очевидны общие характеристики. Следует заметить, что ни одно четное число не может быть разложено на сумму из трех чисел, из которых среднее есть 1, а первое и последнее равны между собой. Банально? Совсем нет. Данный трюизм элементарной арифметики проявится метафизической нумерологической сущностью Ограниченного и Неограниченного, Конечного и Бесконечного, Времени и Вечности, которые в течение прошедших двух тысяч лет, безусловно, находятся среди вопросов, наиболее часто становившихся объектами обсуждения среди метафизиков. Если все сущее есть число, что же такого потрясающего или удивительного мы находим в том, что метафизика есть разновидность мистической арифметики? Непосвященным кажется довольно странным, что числа более десяти высокомерно отвергаются. Но в действительности это не так. Согласно наблюдениям Пифагора, «декады содержат в себе все сущее, поскольку числа более декад просто повторяют первые десять». Мысль заключается в следующем: 11 = 10 + 1; 12 = 10 + 2… 19 = 10 + 9; 20 = 2 × 10; 21 = 2 × 10 + 1;…29 = 2 × 10 + 9;… и т. д. Нумеролог из Вавилона сделал бы все числа сверх 60 отголоском истины, заключенной в числах от 1 до 60. То, что придумали пифагорейцы, равнозначно специальным методам, которыми пользуются в современной высшей арифметике. Они делили все натуральные числа на десять классов. Первый класс включал в себя все натуральные числа, которые давали в остатке 1, когда их делили на 10, второй класс включал в себя те, что давали в остатке 2, когда их делили на 10, и так далее вплоть до десятого класса, который включал все натуральные числа, которые делились на 10 без остатка. С позиций нумерологии было не обязательно относиться по-разному к числам в любом из десяти классов, потому что все они, согласно гипотезе, были, с позиции нумерологии, неотличимы.

Следующее фундаментальное допущение пифагорейцев лежит так глубоко, действительно глубоко, что цивилизованный человек едва ли может надеяться вытащить его на свет разума. Нечетные числа мужского рода, а четные числа – женского. Можно только задать вопрос почему, не ожидая ответа, за исключением, возможно, неуверенного упоминания исчезнувшего фаллицизма или забытого орфизма. Примитивные люди, кажется, были даже более педантичны, чем некоторые из современных, в отношении секса, зачастую включая его физически и духовно в свои верования. Возможно, мужская 1 и женская 2 были святынями из забытых обрядов. Каким бы ни было происхождение физиологической арифметики, она оказалась важна для пифагорейской теории мира.

Исходя из постулата, что существуют числа противоположного пола, следует (согласно пифагорейцам), что для брака число 5 – мужское, число 6 – женское, и оба числа отступают, как и должны, в полноценной декаде. Рассуждения просты. В законном браке одна женщина соединяет свою жизнь с одним мужчиной. Но 2 – это первое женское число, а 3 – первое определенно мужское число. Это один из нумерологических случаев, когда 1, хотя и нечетному числу и по этой причине предположительно мужскому, отказано в привилегиях, данным другим числам. Сложение 2 и 3 есть 2 + 3, или 5, что означает мужское свадебное число. Но ему разумно должно составлять пару женское число. Поскольку в свадьбе женщина усилена мужчиной: 2 × 3 = 6.

Если же спросить, почему не 3 + 4, или 7, стало символом мужской свадьбы вместо 2 + 3, Пифагор ответил бы, что 4 есть справедливость, а справедливость добродетель для мужчин, а не для женщин, поэтому правильно дать браку мужское число 3. Слегка надавив на него, узнаем, почему 4 есть справедливость. Получаем легкий ответ: 4 = 2 × 2 = 2 + 2, где просто на миг не обращают внимания, что 2 – женское число. Но какой бы ни был пол у 2, как и 4 = 2 × 2 = 2 + 2 означает «возврат взаимной любви» или, в более конкретном выражении, «око за око и зуб за зуб» – один из неизменных канонов любой дикарской справедливости. К тому же, где бы оно ни появлялось, число 7 есть девственность, а по этой причине не подходит на роль мужского свадебного числа.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг