Читаем Магия чисел. Математическая мысль от Пифагора до наших дней полностью

Недавнее (1942) наблюдение английского натуралиста, сделанное в Индии, свидетельствует о более раннем схематичном представлении о строении человека. Согласно данным указанного обозревателя, начало этого искусства уходит корнями в дочеловеческие времена. Оказывается, еще обезьяны, наводнявшие конкретную индийскую деревню, избрали плоскую вершину холма поблизости для своей культурной деятельности: подвижных игр, ухаживаний и отдыха. Время от времени одна из шаловливых обезьян предпочитала неожиданно прерывать свои танцы, второпях опускаться на корточки, сильно упирать свою левую руку в песок и палочкой, зажатой в правой руке, как карандаш у чертежника, быстро проводила линию вокруг отпечатка левой руки. Затем, очевидно опасаясь, что делает что-то противоестественное, художница вскакивала и убегала на ближайшее дерево. После чего остальные обезьяны собирались вокруг творения, рассматривая его с трепетным восхищением. Это настоящая рука или это абстрактное изображение всех рук, универсальная Рука в сфере Божественных помыслов? Подобно нам, они не могли постичь увиденное. Они возвращались к своим обыденным занятиям.

Посередине между камнесчетом живых существ и более серьезной полугеометрической нумерологией четырех элементов расположена еще одна система счета Пифагора, значительная часть которой вошла в немистическую высшую арифметику наших дней. Она нашла отражение в истории о купце, которого Пифагор спросил, умеет ли тот считать. Получив утвердительный ответ, Пифагор попросил продолжить.

– Один, два, три, четыре… – начал купец. Тут Пифагор закричал: – Стоп! То, что вы называете четыре, на самом деле то, что вам следует назвать десять. Четвертое по порядку число не четыре, а декада, наш тетраксис и священная клятва, которой мы клянемся.

Чтобы удовлетворить Пифагора, купцу пришлось считать (в наших цифрах) 1, 3, 6, 10, 15, 21, 28, 36… Это так называемые треугольные числа; когда их представляют в виде гальки, они образуют равносторонние треугольники. Пифагор располагал эти числа следующим образом:



и далее в том же роде.

Следующие, 15, формируются выкладыванием вдоль 10-го треугольника, вдоль любой из его сторон, дополнительной гальки в количестве 5 штук, следующее число 21 соответственно добавлением 6 камешков, за ним добавляют 7, потом 8, далее 9 и т. д.



Квадраты целого числа – те же камешки гальки, выложенные по тем же правилам, где 9 получается из 4 выкладыванием камешков вдоль двух прилежащих сторон 4, а 16 выкладыванием вдоль 9. Следующее число 25 получается из 16 и так далее до бесконечности. Таким же образом – любая другая прямоугольная фигура на плоскости (все стороны равны, и все углы равны) устанавливает рамки для выкладывания гальки по классам так называемых многоугольных чисел: пятиугольное число, шестиугольное число, семиугольное число, восьмиугольное число и так далее насколько пожелаете.

Эта связь между правильными геометрическими фигурами и соответствующими последовательными рядами чисел имела важное значение для пифагорейцев, а после них для платонистов, отчасти из-за очевидного единения космической симметрии с числами, а отчасти из-за тетрад и декад, проявлявшихся неожиданно в различных обликах. Были и так называемые продолговатые числа, соответствующие камешкам гальки, разложенным в виде прямоугольника со стороной отличной от предыдущей на 1 камешек, например: 30 = 5 × 6. Когда Пифагор обратил внимание на то, что продолговатое число равно двойному треугольному числу, как в случае с 30 = 2 × 15, он испытал безграничный душевный подъем.

Ободренный видимым успехом с плоскими фигурами, Пифагор отважно ввязался в рискованное предприятие с геометрическими телами. В воображаемом пространстве он успешно выложил из гальки кубические числа 1, 8, 27, 64, 125… унифицированным способом, который может быть оставлен гениальному читателю, желающему открыть его вновь. И тут он застрял, потому что космос для него, как и для всех остальных греческих нумерологов и геометров, имел только три измерения. Они могли себе представить результат умножения трех чисел как объем твердого тела. Так, 3 × 4 × 10 = 120 есть объем короба со сторонами 3, 4, 10. Но умножение типа 3 × 4 × 10 × 12 сбивало их с толку в их геометрической арифметике, поскольку выражение «умножить четыре линии» лишало само действие смысла в трехмерном пространстве. Подобные искусственные барьеры просто исчезли, когда алгебра заняла место геометрии в качестве языка чисел. Но треугольные и прочие многоугольные числа пифагорейцев, а также кубические выжили, по меньшей мере как названия в современной теории чисел. Продолговатые числа исчезли из словаря давным-давно.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг