Читаем Магия математики. Как найти x и зачем это нужно полностью

и предположили, что сумма первых n нечетных чисел равна n². Позже мы это подтвердили, причем очень красиво и остроумно – с помощью комбинаторного доказательства, подсчитав двумя разными способами количество клеток на шахматной доске. А почему бы нам не попробовать другой метод – пусть и не такой эффектный, но при этом ничуть не менее эффективный. Предположим, я сказал вам (или вы просто верите в то), что первые 10 нечетных чисел 1 + 3 +… + 19 дают в сумме 10² = 100. Если вы с этим согласны, значит, прибавление следующего нечетного числа – 21 – даст нам уже 121, что равно 11². Другими словами, если мое утверждение правдиво для десяти чисел, оно будет правдивым и для одиннадцатого. В этом и состоит суть математического доказательства по индукции: сначала мы доказываем, что некое утверждение относительно числа n является изначально верным (обычно при n = 1), а затем показываем, что, если это верно для n = k, оно останется автоматически верным для n = k + 1 и так далее – для любого значения n. Доказательство по индукции подобно подъему по лестнице: поднявшись на первую ступеньку, вы имеете все основания и все возможности подняться и на вторую. Ну а старая добрая логика настойчиво подсказывает, что так вы рано или поздно сможете оказаться и на пятой, и на десятой, и на n-ной ступени.

Так, в примере с первыми n нечетными числами наша задача – показать, что при любом значении n ≥ 1

1 + 3 + 5 +… + (2n – 1) = n²

Мы видим, что сумма самого первого нечетного числа – 1 – и в самом деле составляет 1², то есть для n = 1 наше предположение абсолютно верно. Дальше нам следует обратить внимание на то, что, если сумма первых k нечетных чисел составляет k², а именно

1 + 3 + 5 +… + (2k – 1) = k²

при добавлении следующего нечетного числа (2k + 1) у нас получится

1 + 3 + 5 +… + (2k – 1) + (2k + 1) = k² + (2k + 1) = (k + 1)²

Другими словами, если сумма первых k нечетных чисел равна k², то сумма первых k + 1 нечетных чисел обязательно будет равна (k + 1)². Значит, теорема, истинная в отношении n = 1, будет столь же истинной в отношении любого значения n.◻

Индукция – инструмент действенный. Эта книга начиналась с проблемы определения суммы первых n чисел. Разными путями мы пришли к тому, что



Это предположение, безусловно, правдиво при n = 1 (потому что 1 = 1(2)/2). Предположим, что оно правдиво и для числа k:



Тогда, прибавив к этой сумме (k + 1), получим



В этой формуле k + 1 использовано вместо n. Значит, если она верна для n = k (где под k может скрываться любое положительное число), она будет так же верна и для n = k + 1. Равно как и для любого положительного значения n.◻

В этой главе (да и в книге вообще) будет еще много примеров использования индуктивного метода. А пока для закрепления материала вот вам песня, написанная «музыкантами от математики» Дэйном Кэмпом и Ларри Лессером на мотив знаменитой «Blowin' in the Wind» Боба Дилана.

Откуда нам знать, что теорема вернаС любым значением n?Миллиард вариантов – все не перебрать,Никак не свести в один.Но как же иначе найти нам ответ,Чтоб не свалиться в сплин?Индукция, друг мой, – вот наш господин.Индукция – наш господин.Сначала находим, с чего бы начать,К чему наш закон примени́м,Потом переносим все это на k,Потом – и на k + 1.Ну а дальше легко – ведь эффект доминоНисколечко не отмени́м.Индукция, друг мой, – вот наш господин.Индукция – наш господин!n раз повторю, да хоть n + 1:Индукция – наш господин!
Перейти на страницу:

Похожие книги

Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями

Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания.Эта книга совершает революцию в понимании эмоций, разума и мозга. Вас ждет захватывающее путешествие по удивительным маршрутам, с помощью которых мозг создает вашу эмоциональную жизнь. Вы научитесь по-новому смотреть на эмоции, свои взаимоотношения с людьми и в конечном счете на самих себя.На русском языке публикуется впервые.

Лиза Фельдман Барретт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература