Запишем это двоичным кодом, заменяя каждое возведенное в степень число 2 единицей, а каждое пропущенное значение 2 в степени – нолем. В нашем примере это 83 = (1 × 64) + (0 × 32) + (1 × 16) + (0 × 8) + (0 × 4) + (1 × 2) + (1 × 1). Следовательно, в двоичной системе число 83 выглядит так:
Как удостовериться, что в таком виде можно представить любое положительное число? Предположим, что каждое число от 1 до 99 есть уникальная сумма степеней основания 2. Сможем ли мы представить в столь же уникальном виде число 100? Начнем с наибольшей степени основания 2, которая меньше 100, то есть с 64. (Почему именно 64? Да потому что меньшие значения – 1, 2, 4, 8, 16 и 32 – дадут в сумме лишь 63, а значит, 100 нам никак не получить.) Остается добрать 36 – точно так же, с помощью чисел, которые получаются от возведения 2 в разные степени. Как это сделать? Проще всего – следуя той же логике, что и с сотней, то есть начать с самого большого подходящего нам числа. Так как 36 = 32 + 4, значит 100 = 64 + 32 + 4, в двоичной системе – (1100100)2
. Обобщив это (с помощью так называемого убедительного индуктивного подтверждения), приходим к выводу, что любое положительное число имеет уникальное двоичное представление.Простые числа
Как мы только что убедились, любое положительное целое число может быть представлено в виде уникальной суммы различных степеней числа 2. В принципе, можно говорить, что числа, получаемые при возведении 2 в последовательные степени – это строительные блоки, из которых складываются положительные целые числа.
Примерно то же справедливо и отношении простых чисел и умножения: любое положительное целое число можно представить в виде произведения простых чисел (с той лишь разницей, что простые числа изучены куда меньше, чем степени основания 2, и знаем о них мы далеко еще не всё).
Число 1 простым не является: у него всего один делитель (хотя, конечно, не только поэтому – есть и более веские причины, о которых мы поговорим чуть позже). Обратите также внимание: в этом ряду всего лишь одно четное – 2, что явно (а можно сказать и – выгодно) отличает ее от остальных простых чисел.
Положительное целое число, для которого имеются 3 и более делителя, называется составным, ведь его можно разложить на более простые. Вот они:
Так, у четверки всего три делителя (1, 2 и 4), у шестерки – четыре (1, 2, 3 и 6) и так далее. Обратите внимание, что числа 1 нет и здесь. Математики называют его единицей, числом с уникальным свойством – быть делителем абсолютно любого целого числа.
Каждое составное число может быть представлено в виде произведения простых чисел. Возьмем для примера 120. Можно начать с 120 = 6 × 20. Но и 6, и 20 – тоже составные. Разложим их сразу на простые: 6 = 2 × 3, 20 = 2 × 2 × 5. Следовательно,
Примечательно то, что, на какие бы составляющие мы ни разложили начальное число, результат получится абсолютно тот же. Причина тому – теорема о единственности разложения, основная теорема арифметики, согласно которой каждое положительное целое число больше 1 раскладывается на произведение простых чисел единственным способом, включая порядок следования сомножителей.
Здесь-то, кстати, и кроется настоящая причина того, что число 1 не может быть названо простым: будучи простым, оно бы делало эту теорему несостоятельной. Ведь тогда 12, например, можно было бы представить не только как 2 × 2 × 3, но и как 1 × 1 × 2 × 2 × 3, и разложение на простые числа не было бы уникальным.
Однажды разложив число, вы узнаете всю его подноготную. В детстве моим любимым числом была девятка, но с возрастом я узнавал и другие, куда более сложные (вроде π = 3,14159…, φ = 1,618…,
Зная положительные множители, вы можете узнать и положительные делители – вернее, их количество. Так, любой из делителей 2520 должен сводиться к форме 2