Великий Пьер де Ферма доказал, что если
Следствием теоремы Ферма является то, что, если при наибольшем значении числа
Простые числа активно используются в повседневной жизни – в частности, в вычислительной технике при создании алгоритмов кодирования (на них, например, построена система шифрования с открытым ключом, которая используется при совершении финансовых операций онлайн). В большинстве своем они построены на методах быстрого определения того, является ли то или иное число простым. Жаль только, что нет настолько же эффективных способов быстрого разложения на множители по-настоящему огромных чисел. Так, если я перемножу два случайных тысячезначных числа и скажу вам двухтысячезначный ответ, вы никогда в жизни не сможете найти составляющие его простые величины – ни сами, ни с помощью компьютера (конечно, если этот компьютер не квантовый – а такие собирать пока еще попросту не научились). Зато представляете, насколько надежны коды (вроде алгоритма
Интерес человечества к простым числам стар, как само человечество. Древние греки называли число, равное сумме его делителей (естественно, за исключением самого этого числа),
Видите закономерность? Первое число – это степень основания 2. Второе – на единицу меньше, чем удвоенная степень основания 2; и при этом оно простое (поэтому здесь и нет 8 × 15 или, скажем, 32 × 63: ведь 15 и 63 простыми числами не являются). Закономерность эту можно сформулировать в виде теоремы.
Теорема:
Если число 2n – 1 является простым, число 2n–1 × (2n – 1) будет совершенным.