Читаем Магия математики. Как найти x и зачем это нужно полностью

Отступление

На этот счет, кстати, есть одна шутка, понять которую сможет только математик. Бесконечное количество математиков заходит в бар. Первый заказывает полный бокал пива, второй – половину бокала, третий – четверть, четвертый – одну восьмую… Наконец, бармен не выдерживает и, воскликнув «Нет, ну есть же этому какой-то предел!», наливает им на всех две полные кружки.

Обобщая, можно сказать, что любое число в интервале от –1 до 1, возводимое во все бо́льшую и бо́льшую степень, все ближе и ближе подходит к нулю. В результате мы имеем крайне важный и полезный (бесконечный) геометрический ряд.

Теорема (геометрический ряд): При –1 < x < 1



Чтобы решить нашу последнюю задачу, примем x = 1/2:



Выглядит знакомо, не правда ли? Это потому что мы уже встречались с подобным рядом – в самом конце главы 11, когда с помощью исчисления старались показать, что функция y = 1/(1 – x) соответствует ряду Тейлора 1 + x + x2 + x3 + x4 +….

А что еще мы можем «выжать» из этого ряда? Как насчет следующей суммы?



Если вынести за скобки дробь 1/4, убрав ее из каждого члена, получится



то есть при x = 1/4 мы можем упростить ряд до



Доказать это можно практически без слов – просто посмотрите на рисунок ниже и обратите внимание, что закрашенные квадраты занимают ровно треть общей площади большого квадрата.

Геометрический ряд можно использовать также для доказательства нашей задачи с 0,99999…, ведь бесконечное количество знаков после запятой есть не что иное, как замаскированный бесконечный ряд. Просто примем x = 1/10 и получим




Формула геометрического ряда верна и тогда, когда х – комплексное число, при условии, что длина x – меньше 1. Например, мнимое число i/2 имеет длину 1/2, из чего следует, что



что показано на следующем графике, расположенном на комплексной плоскости.



И хотя формула конечного геометрического ряда верна для любого значения x ≠ 1, (бесконечный) геометрический ряд требует, чтобы |x| был меньше 1. Например, при x = 2 конечный геометрический ряд покажет нам (как мы уже выяснили в шестой главе), что



а бесконечный – что



что выглядит нелепо (хотя это впечатление может быть и обманчивым: в предпоследнем разделе этой главы мы увидим вполне правдоподобное объяснение такого результата).

Отступление

Число положительных целых величин бесконечно:

1, 2, 3, 4, 5…

Равно как бесконечно и количество положительных четных целых величин:

2, 4, 6, 8, 10…

Считается, что первое множество (или число элементов, или степень бесконечности) приблизительно равно первому. В пользу этого утверждения говорит тот факт, что положительные целые и положительные четные целые можно объединить в пары, вот так:

Перейти на страницу:

Похожие книги

Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями

Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания.Эта книга совершает революцию в понимании эмоций, разума и мозга. Вас ждет захватывающее путешествие по удивительным маршрутам, с помощью которых мозг создает вашу эмоциональную жизнь. Вы научитесь по-новому смотреть на эмоции, свои взаимоотношения с людьми и в конечном счете на самих себя.На русском языке публикуется впервые.

Лиза Фельдман Барретт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература