На этот счет, кстати, есть одна шутка, понять которую сможет только математик. Бесконечное количество математиков заходит в бар. Первый заказывает полный бокал пива, второй – половину бокала, третий – четверть, четвертый – одну восьмую… Наконец, бармен не выдерживает и, воскликнув «Нет, ну есть же этому какой-то предел!», наливает им на всех две полные кружки.
Обобщая, можно сказать, что любое число в интервале от –1 до 1, возводимое во все бо́льшую и бо́льшую степень, все ближе и ближе подходит к нулю. В результате мы имеем крайне важный и полезный (
Теорема (геометрический ряд):
При –1 <Чтобы решить нашу последнюю задачу, примем
Выглядит знакомо, не правда ли? Это потому что мы уже встречались с подобным рядом – в самом конце главы 11, когда с помощью исчисления старались показать, что функция
А что еще мы можем «выжать» из этого ряда? Как насчет следующей суммы?
Если вынести за скобки дробь 1/4, убрав ее из каждого члена, получится
то есть при
Доказать это можно практически без слов – просто посмотрите на рисунок ниже и обратите внимание, что закрашенные квадраты занимают ровно треть общей площади большого квадрата.
Геометрический ряд можно использовать также для доказательства нашей задачи с 0,99999…, ведь бесконечное количество знаков после запятой есть не что иное, как замаскированный бесконечный ряд. Просто примем
Формула геометрического ряда верна и тогда, когда
что показано на следующем графике, расположенном на комплексной плоскости.
И хотя формула конечного геометрического ряда верна для любого значения
а бесконечный – что
что выглядит нелепо (хотя это впечатление может быть и обманчивым: в предпоследнем разделе этой главы мы увидим вполне правдоподобное объяснение такого результата).
Число положительных целых величин бесконечно:
Равно как бесконечно и количество положительных четных целых величин:
Считается, что первое