Последняя формула нужна Максвеллу для того, чтобы доказать следующую теорему (proposition XV): найти силу, действующую между двумя наэлектризованными телами. Используя выражения для энергии, возникающей в среде в результате смещения, а также соответствующие выражения для электрического напряжения, Максвелл получает
Таким образом, распространение теории молекулярных вихрей на явления электростатики оказалось возможным именно из-за учета упругости вихрей, которые делают магнито-электрическую субстанцию способной поддерживать волны упругости.
Определенная ранее в теореме XIII величина E оказывается коэффициентом, на который должно быть умножено выраженное в магнитных единицах количество электричества для того, чтобы получить число, выражающее то же самое количество электричества, но в электростатических единицах. Вебер и Кольрауш нашли, что E = 310 740 000 000.
Все это необходимо Максвеллу для того, чтобы доказать теорему XVI: найти скорость распространения
Если среда – упругая, то в ней должны распространяться волны упругости. Рассмотрим плоскую волну, распространяющуюся в поле со скоростью V
в направлении, заданном единичным вектором w (l,m,n). В этом случае все электромагнитные величины будут функциями w = lx+my+nz – Vt.Можно показать, что скалярное произведение двух векторов (μHw) =
0, т.е. что вектор μH перпендикулярен вектору w, что означает, что «направление намагничивания» лежит в плоскости волнового фронта. Решая уравнения Максвелла для случая J = 0, v = 0, мы получаем волновое уравнение kμHx – 4πμ 𝜕2μHx/𝜕𝑡2 = 0 на компоненту Нx и аналогичные уравнения на компоненты Hy и Hz.Учитывая, что Hx = H (w), мы имеем k μ 𝑑2Hx/ d𝑥2 = 4π𝜇2𝑉2 2 𝑑2 Hx / d𝑤2, откудаЭта волна целиком состоит из магнитных возмущений, и при этом направление магнетизации находится в плоскости волны. Ни одно магнитное возмущение, направление которого не находится в плоскости волны, вообще не может распространяться в качестве плоской волны. Поэтому магнитные возмущения, распространяющиеся через электромагнитное поле, похожи на свет в том, что их распределения в любой точке поперечны по отношению к направлению распространения, и такого рода волны могут обладать всеми свойствами поляризованного света.
Применяя «обычные методы теории упругости», Максвелл находит, что скорость распространения этих колебаний в воздухе или в вакууме V=E = 193,088 миль в секунду. При этом, согласно опытам Физо, скорость света в воздухе равна 195,647 миль в секунду. Таким образом, «скорость поперечных колебаний в нашей гипотетической среде, подсчитанная из электромагнитных экспериментов М. М. Кольрауша и Вебера, настолько точно совпадает со скоростью света,
подсчитанной из оптических экспериментов М. Физо, что мы едва ли сможем избежать вывода о том, что свет состоит из поперечных колебанийВ итоге Максвелл не объяснил – откуда берутся, как генерируются электромагнитные волны. Он лишь показал, что его эластичная вихревая среда способна распространять электромагнитные волны со скоростью, которую можно подсчитать из электромагнитных констант и которая весьма и весьма близка к скорости света.
К сказанному выше можно также добавить, что в последней, четвертой части статьи [II], опубликованной в 1862 г. и посвященной объяснению эффекта поворота плоскости поляризации света в магнитном поле, Максвелл подчеркивает следующее обстоятельство.
«Теория, согласно которой электрические токи линейны, а магнитные силы представляют собой вращательные явления, согласуется с теорией Ампера и Вебера; а гипотеза, согласно которой магнитные вращения существуют там, где распространены магнитные силы, и что центробежная сила этих вращений объясняет магнитные притяжения, и что инерция вихрей объясняет индуцированные токи, поддерживается мнением проф. в. Томсона. Фактически я пришел к теории молекулярных вихрей развитой в этой статье, смотря в том же направлении, в котором все эти исследователи, изучающие действие среды, искали объяснение электромагнитных явлений» (Maxwell, [1861], p. 505).