Таким образом, первоначально максвелловская вихревая модель утверждала, что ось оптического вращения всегда должна быть направлена вдоль магнитного поля. Но в то же самое время Эмиль Верде, исследуя экспериментально тот же процесс для солей железа, обнаружил диаметрально противоположный результат: вращение в направлении диаметрально противоположном направлению магнитного поля. Поэтому Максвелл вынужден был предложить объяснение, соединяющее его модель с веберовскими
молекулярными токами! Что неудивительно, если всерьез отнестись к тезису, сформулированному в начале нашего исследования: что Максвелл с самого начала не рассматривал свой подход и подход Ампера-Вебера как взаимоисключающие направления.Но вернемся к результатам третьей части статьи [II]. Введение тока смещения было следствием попыток Максвелла связать уравнения, относящиеся к электрическому току, с уравнениями электростатики, что потребовало модификации закона Ампера за счет введения нового
члена, описывающего упругость вещества, из которого состоят вихри. В итоге импульс, побудивший Максвелла ввести ток смещения, все-таки лежал в попытках объединить все основные эмпирические законы, относящиеся к области явлений электричества и магнетизма, а также оптики, откуда свойство упругости эфира и было перенесено.Важно отметить, что данное объяснение не противоречит т.н. «стандартному подходу» (Пайерлс, 1968; Шапиро, 1972), согласно которому уравнение, содержащее ток смещения, было получено вследствие избавления от противоречивости уравнений Максвелла. В самом деле, в результате усилий, отраженных в статьях [I] и первой и второй частях статьи [II], Максвелл получил следующую систему уравнений:
отсутствие магнитных полюсов div B
= 0 (****); уравнение непрерывности div j + 𝜕Согласно стандартному подходу, к лету 1861 г. Максвелл понял, что эта система уравнений неполна и плохо согласуется друг с другом. Прежде всего, в законе Ампера – в уравнении (**) – член rot H
, по своей математической структуре, является недивергентным, поскольку для любого вектора справедливо соотношение div (rot A) = 0. Но тогда и div J = 0, что противоречит уравнению непрерывности. Понятно, что если мы добавим к правой части закона Ампера (**) выражение для тока смещения 𝜕Но это – лишь математическое выражение согласованности теоретических схем, которое имеет смысл только относительно некоторой идеализированной модели, сводящей воедино различные предметные области. Иначе возникает вопрос: относительно каких объектов система уравнений Максвелла должна быть согласована? Высказывания о согласованности или рассогласованности какой-либо системы уравнений имеют смысл только тогда, если они относятся к одним и тем же теоретическим объектам. В противном случае мы всегда можем избавиться от рассогласованности, утверждая, что одни уравнения относятся к одним случаям, а другие – к другим. Для того, чтобы сравнивать выводы законов Фарадея, Кулона, Ампера и др. между собой, их надо сначала сформулировать на одном и том же теоретическом языке
, гарантирующем, что данные законы описывают однородные в онтологическом отношении ситуации. В этом смысле механические модели действительно помогли Максвеллу создать единое описание электричества, магнетизма и оптики.Как отмечает Д. Сигел, «если бы Максвелл думал только о непротиворечивости своей системы уравнений, он так бы об этом и написал». Но та цель, которую он имел в виду – это объединение электростатики, магнитостатики, магнитодинамики и электродинамики в единое целое на основе теории молекулярных вихрей; поэтому и все математические преобразования он и выделил в особые разделы – в особые теоремы (propositions), – которые отличаются от самой модели. Его интересовали не столько непротиворечивые уравнения, сколько непротиворечивая модель
реально протекающих процессов.