Читаем Максвелловская научная революция полностью

Таким образом, первоначально максвелловская вихревая модель утверждала, что ось оптического вращения всегда должна быть направлена вдоль магнитного поля. Но в то же самое время Эмиль Верде, исследуя экспериментально тот же процесс для солей железа, обнаружил диаметрально противоположный результат: вращение в направлении диаметрально противоположном направлению магнитного поля. Поэтому Максвелл вынужден был предложить объяснение, соединяющее его модель с веберовскими молекулярными токами! Что неудивительно, если всерьез отнестись к тезису, сформулированному в начале нашего исследования: что Максвелл с самого начала не рассматривал свой подход и подход Ампера-Вебера как взаимоисключающие направления.

Но вернемся к результатам третьей части статьи [II]. Введение тока смещения было следствием попыток Максвелла связать уравнения, относящиеся к электрическому току, с уравнениями электростатики, что потребовало модификации закона Ампера за счет введения нового члена, описывающего упругость вещества, из которого состоят вихри. В итоге импульс, побудивший Максвелла ввести ток смещения, все-таки лежал в попытках объединить все основные эмпирические законы, относящиеся к области явлений электричества и магнетизма, а также оптики, откуда свойство упругости эфира и было перенесено.

Важно отметить, что данное объяснение не противоречит т.н. «стандартному подходу» (Пайерлс, 1968; Шапиро, 1972), согласно которому уравнение, содержащее ток смещения, было получено вследствие избавления от противоречивости уравнений Максвелла. В самом деле, в результате усилий, отраженных в статьях [I] и первой и второй частях статьи [II], Максвелл получил следующую систему уравнений:



отсутствие магнитных полюсов div B = 0 (****); уравнение непрерывности div j + 𝜕p/𝜕𝑡 = 0 (*****), демонстрирующее, что электрически заряженные частицы, передающие вращение от одного вихря к другому, не возникают и не исчезают.

Согласно стандартному подходу, к лету 1861 г. Максвелл понял, что эта система уравнений неполна и плохо согласуется друг с другом. Прежде всего, в законе Ампера – в уравнении (**) – член rot H, по своей математической структуре, является недивергентным, поскольку для любого вектора справедливо соотношение div (rot A) = 0. Но тогда и div J = 0, что противоречит уравнению непрерывности. Понятно, что если мы добавим к правой части закона Ампера (**) выражение для тока смещения 𝜕D/𝜕𝑡, самосогласованность уравнений Максвелла будет обеспечена.

Но это – лишь математическое выражение согласованности теоретических схем, которое имеет смысл только относительно некоторой идеализированной модели, сводящей воедино различные предметные области. Иначе возникает вопрос: относительно каких объектов система уравнений Максвелла должна быть согласована? Высказывания о согласованности или рассогласованности какой-либо системы уравнений имеют смысл только тогда, если они относятся к одним и тем же теоретическим объектам. В противном случае мы всегда можем избавиться от рассогласованности, утверждая, что одни уравнения относятся к одним случаям, а другие – к другим. Для того, чтобы сравнивать выводы законов Фарадея, Кулона, Ампера и др. между собой, их надо сначала сформулировать на одном и том же теоретическом языке, гарантирующем, что данные законы описывают однородные в онтологическом отношении ситуации. В этом смысле механические модели действительно помогли Максвеллу создать единое описание электричества, магнетизма и оптики.

Как отмечает Д. Сигел, «если бы Максвелл думал только о непротиворечивости своей системы уравнений, он так бы об этом и написал». Но та цель, которую он имел в виду – это объединение электростатики, магнитостатики, магнитодинамики и электродинамики в единое целое на основе теории молекулярных вихрей; поэтому и все математические преобразования он и выделил в особые разделы – в особые теоремы (propositions), – которые отличаются от самой модели. Его интересовали не столько непротиворечивые уравнения, сколько непротиворечивая модель реально протекающих процессов.

Перейти на страницу:

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука