Читаем Максвелловская научная революция полностью

Найденные в итоге уравнения Гамильтона, содержащие обобщенные переменные q, dq/dt, p и dp/dt, а также выражения для кинетической (Tu ) и потенциальной (Tp) энергий Максвелл применяет в главе VI для создания «Динамической теории электромагнитного поля». В последней он исходит из предположения о том, что энергия электрического тока предстает как в той форме, которая определяется «действительным движением материи», так и в той, которая заключается в возможности получать движение в результате наличия сил, действующих между действительно расположенными друг относительно друга телами. Здесь он еще раз подчеркивает, – несмотря на указания Фарадея, – что «электрический ток нельзя рассматривать иначе, как некоторое кинетическое явление. Даже Фарадей, который постоянно старался освободить свою мысль от влияния тех представлений, которые слишком связаны со словами «электрический ток» и «электрический флюид», говорит об электрическом токе как о движении, а не о расположении… мы достаточно знаем относительно электрических токов для того, чтобы признать в системе материальных проводников, несущих ток, динамическую систему, являющуюся местонахождением энергии, часть которой может быть кинетической энергией, а часть потенциальной. Природа связей частей этой системы нам неизвестна, но, поскольку мы имеем динамические методы исследования, которые не требуют знания механизма системы, мы будем применять их к этому случаю» (Максвелл, [1873], 1952, С. 429-430).

Получаемые в итоге «Общие уравнения электромагнитного поля» (гл. IX) еще далеки от т.н. «уравнений Лоренца-Хевисайда», состоя из трех систем уравнений (всего 20 штук). В красноречивом отрывке, приводимом ниже, Максвелл еще раз подчеркивает, что выражение для тока смещения не является само собой разумеющимся результатом, вытекающим естественным образом из основных принципов динамики, а возникает как результат принятия определенной точки зрения.

«Одна из главных особенностей этого трактата состоит в принятии концепции, согласно которой истинный электрический ток Τ, тот, от которого зависят электромагнитные явления, нельзя отождествить с током проводимости, но что должно быть принято во внимание при исчислении общего движения электрического изменения во времени электрического смещения D, так что мы должны написать T = Ω + D (уравнение истинных токов) или более подробно



И в завершающей главе XX, посвященной электромагнитной теории света, содержащей те же результаты, что и работа [III], на первый план выдвигается следующий аргумент в пользу существования электромагнитных волн: «Заполнять пространство новой средой всякий раз, когда следует объяснять какое-либо новое явления, никоим образом не является истинно философской процедурой. Однако если изучение двух различных отраслей науки независимо друг от друга выдвинуло идею среды и если свойства, которые должны быть приписаны этой среде, исходя из электромагнитных явлений, имеют тот же характер, который мы приписываем светоносной среде для объяснения явлений света, то очевидность физического существования такой среды серьезно укрепляется» (Максвелл, [1873], 1952, С. 550).

Но важно, что в «Трактате» Максвелл столкнулся с той же проблемой, что и в [III] – проблемой применения лагранжева формализма к электромагнитному полю. Для более ясной формулировки этой проблемы обратимся еще раз к максвелловской аналогии с колокольней. Механизм возникновения электромагнитных колебаний в эфире аналогичен механизму приведения колоколов в движение. Так же как мы не знаем, каким именно образом генерируется электромагнитное излучение, мы не знаем, как именно связаны колокола с веревками.

Но на двадцати с лишним страницах главы своего «Трактата» Максвелл построил лагранжиан, как разность кинетической и потенциальной энергий, только для случая замкнутых токов. Тем не менее при переходе к случаю электромагнитных возмущений в пустом пространстве, требующего токов незамкнутых, он просто «руками» прибавил ток смещения к току проводимости (подробнее см. Chalmers, 2001). Обосновал он этот шаг следующим образом: «У нас имеется чрезвычайно мало экспериментальных данных, относящихся к прямому электромагнитному действию токов из-за изменения электрических смещений в диэлектриках, но крайняя сложность согласования законов электромагнетизма с существованием электрических токов, которые незамкнуты, является одной причиной из многих, почему мы должны признать существование токов проводимости вызванных изменением смещения. Их важность будет видна, когда мы перейдем к электромагнитной теории света» (Maxwell [1873], 1890, p. 252).

Как отмечает Алан Чалмерс, этот небольшой шаг Максвелла фактически подрывал главную притягательность использовавшегося им метода Лагранжа. Неслучайно первое экспериментальное доказательство существования тока смещения было дано только в опытах Герца (1888).

Перейти на страницу:

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука