Эта энергетическая пропасть ставит физиков в неловкое положение, вынуждая признать, что проверить теорию струн крайне трудно. В главах 7 и 8 я расскажу о попытках таких проверок, а в этой и двух следующих сосредоточусь на описании теории струн в терминах самой теории струн, без каких бы то ни было апелляций к реальному миру, за исключением разве что отдельных аналогий, которые потребуются для более наглядного объяснения. Представьте, что я пересказываю краткий курс римской истории: повествование изобилует множеством неожиданных развилок и поворотов, и зачастую вам трудно удержать его нить. Но мы изучаем древних римлян не столько для того, чтобы понять их, сколько для того, чтобы понять самих себя. Вот точно так же и теория струн содержит массу неожиданных развилок и поворотов, и я не ожидаю, что мои объяснения окажутся простыми и понятными, но надеюсь, что глубокое понимание теории струн поможет лучше понять наш реальный мир.
В данной главе мы сделаем три важных шага к этому пониманию. Первый шаг позволит увидеть, как теория струн разрешает фундаментальное противоречие между теорией гравитации и квантовой механикой. Второй шаг объяснит, каким образом струны колеблются и движутся в пространстве-времени. Третий — даст представление о том, как само пространство-время возникает в наиболее широко используемом математическом описании струн.
Гравитация против квантовой механики
Квантовая механика и Общая теория относительности — две триумфальные физические теории, возникшие в начале XX века, — как оказалось, не согласованы друг с другом. Трудность возникает при применении метода, получившего название
Фотоны взаимодействуют с электрическими зарядами, но при этом сами по себе электрически нейтральны. Например, имеющий электрический заряд электрон в атоме водорода, перескакивая с одного энергетического уровня на другой, излучает фотон. Именно это я имею в виду, когда говорю, что фотоны взаимодействуют с зарядами. Утверждение, что сам фотон не имеет электрического заряда, равносильно утверждению, что свет не проводит электричество. Если бы это было не так, то вы каждый раз получали бы удар током, схватившись за какой-нибудь предмет, который достаточно долго пролежал на солнечном свету. Фотоны не взаимодействуют друг с другом; они взаимодействуют только с электрическими зарядами.
Гравитоны реагируют не на заряды, а на массу, энергию и импульс. А поскольку они переносят энергию, то взаимодействуют и друг с другом. Может показаться, что это не представляет особой проблемы, однако именно из-за этого мы и сталкиваемся с трудностями. Квантовая механика учит нас, что гравитоны ведут себя и как волны, и как частицы. Частицы гипотетически являются точечными объектами. А точечный гравитон будет притягивать вас тем сильнее, чем ближе к нему вы окажетесь. Его гравитационное поле может быть описано как испускание других гравитонов. Мы будем называть пробный гравитон материнским, а испускаемые им гравитоны — дочерними. Гравитационное поле вблизи материнского гравитона является очень сильным. А значит, его дочерние гравитоны обладают огромными энергиями и импульсами. Это непосредственно следует из принципа неопределённости: дочерние гравитоны наблюдаются на очень небольшом расстоянии Δ
На самом деле нечто подобное происходит и возле электрона. Если вы попытаетесь измерить электрическое поле очень близко к электрону, то спровоцируете его испустить фотон с очень большим импульсом. Это кажется безобидным, потому что, как мы знаем, фотоны не испускают другие фотоны. Беда в том, что фотон может родить электрон-позитронную пару, которая затем испустит ещё больше фотонов, которые породят новые электроны и позитроны... Полный бардак! Самое удивительное, что в случае с электронами и фотонами вы тем не менее можете полностью описать всё множество частиц, каскадно рождаемых друг от друга. Иногда говорят об одежде, или «шубе», из потомства, в которую укутан электрон. Физики употребляют для описания электронного потомства термин «виртуальные частицы». Перенормировка — это математический метод, позволяющий отследить всю эту кашу.