Может показаться, что мы слишком далеко ушли от D-бран, но это не так. D-браны как раз служат примером тому, о чём мы только что говорили. Как мы видели, D-браны обладают вращательной симметрией. Вспомним хотя бы сравнение D1-браны с флагштоком посреди тротуара, имеющим ту же симметрию, что и окружность. Вращательная симметрия помогает объяснить многие свойства D-бран, но и калибровочная симметрия играет огромную роль. Вот первый намёк на связь D-бран и калибровочной симметрии: если мы возьмём D1-брану, представляющую собой прямую, и «стукнем» по ней в определённом месте, то от места удара в разные стороны побегут два небольших возмущения. Эти возмущения будут двигаться со скоростью света, ведя себя как безмассовые частицы, и ничто не заставит их остановиться. Мы уже знаем, что безмассовые частицы, такие как фотоны, обладают калибровочной симметрией, и калибровочная симметрия заставляет их быть безмассовыми. То же самое происходит и с возмущениями на D1-бране. Я, конечно, сильно всё упрощаю, потому что возмущения на D1-бране, конечно же, совсем не похожи на фотоны. Например, они не имеют спина, но если мы рассмотрим такие же возмущения на D3-бране, то некоторые из них будут иметь спин и с математической точки зрения ничем не будут отличаться от фотонов. Как только этот факт был установлен, физики тут же кинулись строить модели мира, в которых он представляет собой D3-брану. Правда, всё ещё остаются дополнительные измерения, но мы не можем их наблюдать, поскольку мы застряли на бране. Кажется, что достаточно оснастить эту брану фотонами, и идея будет вполне жизнеспособной. Всё, что нам нужно для полного удовлетворения, это ещё пятнадцать или около того элементарных частиц. К сожалению, D3-брана сама по себе не обеспечивает их существования. В настоящее время в этом направлении ведутся интенсивные исследования, цель которых состоит в том, чтобы выяснить, какие ещё ингредиенты нам нужны для построения мира на D3-бране.
D-браны в теории суперструн также имеют заряд, похожий на электрический. В случае D0-бран такая аналогия оказывается вполне точной: у них есть заряд, который мы могли бы обозначить как +1. Существует ещё один объект — анти-D0-брана, несущий заряд −1. А теперь вспомним наш разговор о почти столетней идее о том, что заряд связан с дополнительным свёрнутым измерением. Она отлично работает для D0-бран. Одним из прорывов второй суперструнной революции стало открытие, что теория суперструн содержит дополнительное скрытое измерение за пределами тех десяти, что к тому времени уже были задействованы. D0-брана, которая, как вы помните, выглядит точкой, может быть описана как частица, движущаяся по окружности в этом одиннадцатом измерении. Если частица движется в одиннадцатом измерении в противоположном направлении, то это анти-D0-брана. Осознание этого достижения заставило рассматривать одиннадцатимерную супергравитацию всерьёз. В каком-то смысле струнные теоретики уже давно изучали её, сами того не осознавая! И получается, что одиннадцатое измерение не должно быть свёрнуто в крохотную окружность. По мере того как мы увеличиваем радиус окружности, возрастает сила взаимодействия между суперструнами. Они делятся и соединяются столь быстро, что попытки уследить кажутся безнадёжными. Но по мере усложнения динамики струнной картины новое измерение буквально раскрывается. Одиннадцатимерная супергравитация становится простейшим инструментом описания сильно взаимодействующих суперструн. Мы не знаем точно, как объединить квантовую механику с одиннадцатимерной супергравитацией, но мы убеждены, что должен существовать какой-то способ это сделать, потому что теория струн является полностью квантово-механической теорией и она, безусловно, включает одиннадцатимерную супергравитацию, когда взаимодействия суперструн становятся сильными. Этот круг идей вскоре получил название M-теории.
Струнные теоретики возлагают большие надежды на то, что все наши представления о заряде и калибровочной симметрии могут просто вытекать из скрытой многомерной природы мира. В главе 7 мы подробно обсудим, как это может работать. В главах 6 и 8 я расскажу, как дополнительные измерения могут быть использованы для описания сильных взаимодействий типа взаимодействия между кварками и глюонами внутри протона. Чтобы дать вам общее представление, сообщу, что при некоторых обстоятельствах или в некотором приближении эти взаимодействия могут быть описаны в терминах пятого измерения. Это пятое измерение «раскрывается» подобно одиннадцатому измерению M-теории, когда взаимодействия становятся слишком сильными, чтобы отслеживать их в обычных четырёх измерениях.
Как я уже говорил ранее, D0-браны несут некий заряд, и существует ещё один объект, называемый анти-D0-браной, который несёт противоположный заряд. Что произойдёт, если D0-брана столкнётся с анти-D0-браной? Ответ, очевидно, состоит в том, что они взаимоуничтожатся, исчезнув во вспышке излучения. Сейчас я более подробно расскажу, как взаимодействуют между собой D0-браны и анти-D0-браны.