Когда наш зонд проваливается сквозь горизонт (рис. 3.4 и 3.5), он, в принципе, уже испытывает некоторое воздействие приливных сил, но незначительное, – ведь черная дыра такая огромная, а зонд довольно маленький, – ну, скажем, всего метр в поперечнике. Но внутри черной дыры эта ситуация быстро меняется. Как мы уже говорили, если уж зонд оказался под горизонтом, никакое ускорение не способно помочь ему избежать сингулярности. По сути, оказывается, что если мы хотим максимизировать собственное время жизни зонда прежде, чем он найдет свой безвременный конец, то лучшее, что мы можем сделать, – не заставлять его ускоряться вообще. Пусть он продолжает двигаться по геодезической. Тогда он войдет в сингулярность примерно через 27 секунд после пересечения горизонта. Приливные силы, вызванные гравитационным притяжением черной дыры, будут быстро расти по мере того, как зонд приближается к сингулярности, и к тому моменту, когда до входа в нее останется примерно от 10 до 100 микросекунд (точная цифра зависит от того, насколько прочен металл, из которого сделан зонд), его корпус разлетится на части. Растущая мощь приливных сил разнесет обломки зонда на еще более мелкие кусочки, а потом и эти кусочки распылятся на составляющие их атомы. Но и на этом дело не кончится – вскоре приливные силы вырастут настолько, что оторвут все электроны от атомных ядер, затем разорвут и сами ядра на протоны и нейтроны, а их – на кварки и глюоны. Действительно, «бабах»! Что будет дальше, неизвестно, потому что, насколько мы знаем, кварки, глюоны и электроны – точечные неделимые объекты. Но мы точно можем сказать, что два угловых направления в трехмерном пространстве сами сжимаются все сильнее и сильнее по мере приближения к сингулярности, а третье пространственное направление, соответствующее тому, что мы раньше, вне черной дыры, называли временем, испытывает еще более радикальное растяжение. В общем, всё, включая и наш зонд, сплющивается и растягивается в бесконечно тонкую линию.
Похоже, теперь мы исследовали решение Шварцшильда от начала до рокового конца. Поистине чудесным образом оно в простой и точной форме характеризует геометрию искривленного пространства-времени, в котором мы живем, и одновременно позволяет дать приближенное описание пространства-времени в окрестностях самого массивного объекта нашей Галактики, колоссальной черной дыры в ее центре. Сама по себе шварцшильдовская черная дыра абсолютно статична; она затаилась, как паук, в центре искривленной геометрической сети. Как мы теперь знаем, объекты, пролетающие слишком близко к ее горизонту, должны изо всех сил вырываться из пут ее притяжения, а всё, что пересекает ее горизонт (по крайней мере, мы так думаем!), очень скоро «переваривается» при помощи приливных сил, превращаясь в непредставимо тонкий поток вещества, устремляющийся в сингулярность.
Но это еще не конец рассказа о решении Шварцшильда. У шварцшильдовской метрики есть и другое воплощение, в пространственно-временном смысле диаметрально противоположное черной дыре, его называют