Читаем Маркетинг 5.0. Технологии следующего поколения полностью

Существует множество техник для создания предиктивных маркетинговых моделей от самых простых до самых сложных. Маркетологам будет нужна помощь специалистов по статистике и аналитиков данных для построения и разработки моделей. Таким образом, им не требуется обладать глубоким пониманием статистических и математических моделей. Однако маркетологам может потребоваться понимание стоящих за предиктивными моделями фундаментальных идей, чтобы они могли направлять технологические команды в том, какие выбрать данные и какие закономерности искать. Более того, маркетологи будут помогать интерпретировать модели, а также внедрять прогнозы в реальную операционную деятельность.

Ниже перечислены некоторые из самых часто используемых типов предиктивного моделирования, которые маркетологи используют для различных целей.

Модель регрессии для простых прогнозов

Модель регрессии – одна из самых базовых, однако полезных инструментов для предиктивной аналитики. Модель оценивает взаимосвязь между независимыми (или объясняющими данные) и зависимыми (объясняемыми) переменными. Зависимые переменные – это результаты или показатели, к которым стремятся маркетологи, как, например, данные о переходах или продажах. С другой стороны, независимые переменные – это влияющие на результат данные, такие как время кампании, рекламный текст или демографические показатели покупателя.

В регрессионном анализе маркетологи ищут статистические уравнения, которые объясняют связь между независимыми и зависимыми переменными. Другими словами, маркетологи стремятся понять, какие маркетинговые действия имеют наиболее существенный эффект и приводят к наилучшим для бизнеса результатам.

Относительная простота регрессионного анализа, в сравнении с другими техниками моделирования, делает его самым популярным. Регрессионный анализ может быть использован для многих применений предиктивного маркетинга, таких как построение модели клиентского капитала, модели предрасположенности к покупке, модели обнаружения сбоев и модели аффинитивности товаров.

В общем случае регрессионное моделирование выполняется в несколько шагов.

Перейти на страницу:

Все книги серии Атланты маркетинга

Похожие книги

Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний
Масштаб. Универсальные законы роста, инноваций, устойчивости и темпов жизни организмов, городов, экономических систем и компаний

Жизненными циклами всего на свете – от растений и животных до городов, в которых мы живем, – управляют универсальные скрытые законы. Об этих законах – законах масштабирования – рассказывает один из самых авторитетных ученых нашего времени, чьи исследования совершили переворот в науке. «Эта книга – об объединенной и объединяющей системе концепций, которая позволила бы подступиться к некоторым из крупнейших задач и вопросов, над которыми мы бьемся сегодня, от стремительной урбанизации, роста населения и глобальной устойчивости до понимания природы рака, обмена веществ и причин старения и смерти. О замечательном сходстве между принципами действия городов, компаний и наших собственных тел и о том, почему все они представляют собой вариации одной общей темы, а их организация, структура и динамика с поразительной систематичностью проявляют сходные черты. Общим для всех них является то, что все они, будь то молекулы, клетки или люди, – чрезвычайно сложные системы, состоящие из огромного числа индивидуальных компонентов, взаимосвязанных, взаимодействующих и развивающихся с использованием сетевых структур, существующих на нескольких разных пространственных и временных масштабах…» Джеффри Уэст

Джеффри Уэст

Деловая литература / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Финансы и бизнес