Читаем Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData полностью

Если изображение находится в произвольном месте, или имеются другие изображения, то для определения потребуется несколько слоёв нейронной сети, и результатом будет являться также карта расположения цифры, но принятие решения о её нахождения нужно её идентифицировать. Таким образом, первый слой будет иметь количество нейронов отображающих карты, что по горизонтали и вертикали будет соответствовать ширине и высоте листка минус соответствующую ширину и высоту анализирующего экрана, делённую на шаг сдвига анализирующего окна. Размерность второго же слоя в нейронах равна размерности анализируемого окна, чтобы иметь возможность идентификации цифры. Если мы проведём связи от всех нейронов слоя поиска к слою анализирующего окна, то на выходе мы получим набор снимков влитых вместе. Следующий слой будет иметь размерность, равную количеству анализируемых элементов цифр. К примеру, цифру можно представить в виде не полностью закрашенной восьмёрки, тогда, закрашиваемых сегментов будет семь. Все нейроны свёрточного слоя будут связаны со всеми нейронами слоя анализа сегментов цифры. Задача нейрона этого слоя быть связанным с нейронами предыдущего, ответственными за данный сегмент и выдать результат наличия или отсутствия данного сегмента в цифре. Следующий слой имеет состоит из десяти нейронов, соответствующие цифрам от нуля до девяти. Всего его нейроны связаны с предыдущим слоем и активируются при получении сигналов от них. Так, нейрон, ответвленный за цифру один будет активироваться, если получит информацию, что два крайних правых сектора будут активны и не активны все остальные. Описанный алгоритм детектирования искомого изображения называется R–CNN (Region–based Convolutional Network) и использовался долгое время. Далее он был сменён Fast R–CNN, а ныне применяется YOLO (Real–Time Object Detection) из–за большего качества и скорости работы.

Перейти на страницу:

Похожие книги

1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих
1С: Управление небольшой фирмой 8.2 с нуля. 100 уроков для начинающих

Книга предоставляет полное описание приемов и методов работы с программой "1С:Управление небольшой фирмой 8.2". Показано, как автоматизировать управленческий учет всех основных операций, а также автоматизировать процессы организационного характера (маркетинг, построение кадровой политики и др.). Описано, как вводить исходные данные, заполнять справочники и каталоги, работать с первичными документами, формировать разнообразные отчеты, выводить данные на печать. Материал подан в виде тематических уроков, в которых рассмотрены все основные аспекты деятельности современного предприятия. Каждый урок содержит подробное описание рассматриваемой темы с детальным разбором и иллюстрированием всех этапов. Все приведенные в книге примеры и рекомендации основаны на реальных фактах и имеют практическое подтверждение.

Алексей Анатольевич Гладкий

Экономика / Программное обеспечение / Прочая компьютерная литература / Прочая справочная литература / Книги по IT / Словари и Энциклопедии