Посмотрим на рост глобальных инвестиций корпораций и стартапов в AI:
2015 – 12 и 8 Mil.$ 2016 – 17 и 12 Mil.$ 2017 – 44 и 22 Mil.$ 2018 – 43 и 37 Mil.$ 2019 – 49 и 39 Mil.$ 2020 – 67 и 42 Mil.$
Посмотрим частный пример, на рост индустрии на примеров увеличения количества сервисов машинного перевода:
2017 – 7 2018 – 10 2019 – 21 2020 – 24
Теперь, собственно, настало поговорить о вакансиях. Количество вакансий с 2016 по 2020 год выросла 1.3..2.7 раз, при этом число вакансий от общего числа составляют от 0.2% до 2.4%:
США – 210% Канада – 270% Австралия – 210% Сингапур – 250% Германия – 220% Италия – 170% Франция – 160% Китай – 130%
В курсах по AI доля Machine Learning составляет 42%.
Если же говорить об рабочих местах и о смещении на технологические рабочие места. Часто, компании, которые автоматизируют рабочие места, заявляют, что сотрудники которые их занимали могут переквалифицироваться и начать управлять этими автоматизированными системами. Обычно, люди со стороны относятся к этому с недоверием, так как непонятно, зачем автоматизировать и потом оставляют тоже количество людей, ведь автоматизация подразумевает в их понятие автономность. Но, это не так, так как автоматизация подразумевает наличие огромного количества людей, разрабатывающих и обслуживающих эти системы. Так, в одной из крупнейших компаний России есть план, который подразумевает освобождение нескольких тысяч мест продавцов, кассиров и других операторов, но вместе с тем запланирован найм большего количества тысяч рабочих мест специалистов обслуживающих системы AI. Ожидается качественный и масштабируемый прирост показателей услуг, предоставляемых компанией, а большей степени отрытие новых ниш развития компании. Количество в среднем останется таким же, так как большой набор проектный (единичный), а отток – плановый (ежегодный). Но, конечно, продавцы и кассиры маловероятно, что переквалифицируются в разработчиков, аналитиков и учёных с сфере ИИ. Хотя, большими компаниями делаются попытки в этом направлении – создаются курсы и очное обучение на несколько месяцев для переквалификации сотрудников. Обычно, люди с умирающих профессий переквалифицируются в другие умирающие профессии, у которых умирание произойдёт с небольшим запозданием. Это связано с тем, что люди бегут с простых работ на работы чуть сложнее, чем были до этого, ожидая быструю и разовую переквалификацию. Например, продавцы могут переквалифицироваться в таксистов, где требуется чуть больше технических навыков, чем их прежняя работа, и автоматизация, чуть сложнее и чуть менее эффективна. Такая ситуация была всегда, и связана она с любой автоматизацией, не только компьютерной. Общей чертой профессий, подлежащих автоматизации является рентабельность, то есть они достаточно массовы и легко автоматизируются, чтобы это стало выгодным. Популярность профессии для перехода с умирающей и является, что она скоро станет массовой, а лёгкость переквалификации связана со стандартизацией. Так, курсы по переквалификации уже говорят, что есть алгоритм и он будет применён многократно, пока только на этапе переквалификации, а не на этапе постоянной работы. Отсюда вытекает следствия, что столь популярная профессия как Web программист с понятными навыками, понятными заданиями может быть автоматизирована. Не секрет, что в разработке формализован стиль кода, фреймворки, подходы, постановка задач. И действительно, современные готовые (предобученные) нейронные сети могут генерировать работающий программный код, но об этом позже в этой книге. Но, программисты, гораздо ближе к эффективной переквалификации, если он если они не занимаются простым кодированием. Но, только 2020, нейронные сети могут формировать только простой код на языке программирования, а насколько – в соответствующем разделе. Поэтому программисты разделяются на два лагеря – программисты пишущие типовой код, которым сложно адаптироваться, но которых это коснётся и программистов, которых могут переквалифицироваться, который понемногу будут вытеснять первая группа программистов, и которым, скорее всего интереснее и перспективнее это будет сделать. Правда тут не всё так однозначно, так с 2018 года, нейронные сети уже умеют проектировать другие специализированные нейронные сети с помощью технологии AutoML.
Что, касается самой профессии Data scines – это аналитик данных, который на основе понимания предметной области может с помощью статистических методов используя инструменты (языки, системы) получить предсказания. Более подробно о навыках:
* математическая статистика и теория вероятностей, чтобы мог выбрать статистические методы, где ML не нужен;
* алгоритмы ML: регрессия, классификация, кластеризация, порождения (генерации), сопоставление;
* программирование: аналитика на R, написание моделей на Python и подключение данных из Java+SQL (Hadoop, Hive, Spark, Pig), управление жизненным циклом модели (DevOps, SRE);