Читаем Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData полностью

* 2020 год – чат-бот на GPT-3 был не распознан собеседниками в социальной сети, видео-интерьвью с авотаром я не отличил от естественного,

* 2021 год – OpenAI Codex создаёт программы по детальному описанию задачи на естественном языке.

Достижения последнего времени:

* распознавание речи по движению губ;

* выигрыши в в 2D игры и 3D игры;

* выигрыши в настольные игры: шахматы, Go;

* синхронный перевод в Skype: разговор между людьми без знания языков друг друга;

* автопилот в автомобилях;

* FindFace распознаёт лица;

* описание изображение текстом и наоборот.

Достижения на 2019 год:

* чтение по губам лучше профессионала (DeepMind Lip Reading);

* изображения: фотореалистичная генерация изображений (Google bigGAN), трансформация видео (NVIDEA vid-to-vid), создание изображений по макетам (NVIDEA gauGAN), обучение беспилотников по виртуальным маршрутам (NVIDEA Drive);

* текст: GPT, BERT, BART, T5, ELMo и другие архитектуры развиваются, расширяют свою сферу применения, эволюционируют;

* звук: умные колонки, с умением автоответчика вести разговор;

* соревнования: AlphaZero обыграла чемпионов в Go и шахматы, другие сети обыграли в StartCraft, Dota-2, покер;

* медицина: визуализация снимков;

* автоматизация: AliBaba автоматизировала Ханджоу (светофоры, инфраструктура), Google автоматизировал охлаждение своих Data центров, автопилоты и другие Edge AI;

* доступность: дообучение готовых моделей в Cloud.

Достижения на 2020 год:

* Intel создал нейроморфную машину Loihi с 1024 нейронами и IBM TrueNorth с миллионом нейронов;

* модель MuZero сама учится играть в неизвестные ей игры (Atari + Go + шахматы + японские шахматы) без начальных знаний, обучающих партий людей и программ и выигрывает у узкоспециализированной AlphaZero, традиционных программ Stockfish и людей в шахматы;

* модель mT5 обучена на более 100 языках для переводов;

* GPT-3 и ruGPT умеют писать программы;

* Модель GPT-3 написала передовицу для газеты Гардиан;

* Модель NVidia StyleGAN2 генерирует правдоподобные лица людей.

Достижения на 2021 год:

* создание ML с несколькими навыками, таких как GPT-3;

* генерация изображения по текстовому описанию: нейронная сеть OpenAI DALL-E (GPT-3 13 + автоинкодер) от OpenAI;

* генераторы музыки: Pod Music Transformet (нотная модель), OpenAI Jukebox (звуковая модель: голос и музыка);

* нейронная сеть создаёт Atari игры по образцу;

* OpenAI Codex создаёт программы по детальному описанию задачи на естественном языке.

Но, в 2021 году более интересны проекты, которые имеют применение нейронных сетей в бизнесе:

* генерация генотипа человека для обхода закона о запрете экспериментов над необезличенным генотипом;

* Яндекс выпустил беспилотных доставляющих роботов;

* одна из нейронных сетей одержала победу над реальным пилотом истребителя и бедет внедряться в боевые беспилотники;

* Яндекс продемонстрировал работу беспилотного такси Yandex Self-Driving Car на дрогах общего пользования города после снегопада;

* чат-бот от Microsoft имитирующий старшеклассница Tay долгое время оставался нераспознанным к бот;

* генерация изображения по текстовому описанию: нейронная сеть Николай Иронов от студии дизайна Студии Артемия Лебедева генерит коммерческие логотипы.

* внедрены системы управления бизнес процессами на основе обучения с подкреплением (игрового принципа обучения);

* многие страны создали стратегии развития AI на государственном уровне, так в России принята стратегия указом №490 "О развитии искусственного интеллекта в Российской Федерации";

* на законодательном уровне формируется экосистема для AI: в России принят закон посвящённых AI (Закон об искусственном интеллекте 123-ФЗ).

* обучение на малых датасетах: копирование голоса по записи длительностью в 4 часа как SaaS продукт.

* виртуальная ведущая Елена от Сбербанка эмулирует мимику во время разговора, но не очень естественно, на мой взгляд.

Достижение на 2022 год:

* Кроме OpenAI Codex (Copilot, модель GPT3 обученная на коде), есть DeepMind AlphaCode, TabNine и многие другие уже встроенные в популярные среды разработки кода.

* Голосовой собеседник LaMDA признан достаточно правдоподобным в диалоге.

Но не стоит забывать про стандартные задачи:

* Intelligent document processing – извлечение структурированных данных из неструктурированных бумажных документов;

* Process Mining – описание реальных процессов по цифровым следам, определение узких мест и зацикливаний и возможных решений.

Достижения это хорошо, но это демонстрация потенциальных возможностей. Давайте посмотрим, что добились нейронные сети в индустрии на основании отчёт об искусственном интеллекте Artificial Intelligence Index Report 2021.

Перейти на страницу:

Похожие книги

Искусство программирования для Unix
Искусство программирования для Unix

Книги, подобные этой, редко появляются на прилавках магазинов, поскольку за ними стоит многолетний опыт работы их авторов. Здесь описывается хороший стиль Unix- программирования, многообразие доступных языков программирования, их преимущества и недостатки, различные IPC-методики и инструменты разработки. Автор анализирует философию Unix, культуру и основные традиции сформированного вокруг нее сообщества. В книге объясняются наилучшие практические приемы проектирования и разработки программ в Unix. Вместе с тем описанные в книге модели и принципы будут во многом полезны и Windows-разработчикам. Особо рассматриваются стили пользовательских интерфейсов Unix-программ и инструменты для их разработки. Отдельная глава посвящена описанию принципов и инструментов для создания хорошей документации.Книга будет полезной для широкой категории пользователей ПК и программистов.

Эрик Стивен Реймонд

ОС и Сети / Программирование / Прочая компьютерная литература / Книги по IT