Другим вариантом поэлементной операции является применение одной операции ко всем элементом по одиночке, например умножение на –1 или применение функции:
a tensor([ [ 1., 2., 3.], [ 5., 6., 7.], [ 8., 9., 10.] ]) a * –1 tensor([ [ –1., –2., –3.], [ –5., –6., –7.], [ –8., –9., –10.] ]) a.abs tensor([ [ 1., 2., 3.], [ 5., 6., 7.], [ 8., 9., 10.] ])
Также имеются операции свёртки, такие как sum, min, max, которые на входе дают сумму всех элементов, самый маленький или самый большой элемент матрицы:
a.sum tensor(51.) a.min tensor(1.) a.max tensor(10.)
Но нам будут больше интересны постолбцовые операции (операция будет производиться над каждым столбцом):
a.sum(0) tensor([14., 17., 20.]) a.min(0) torch.return_types.min( values=tensor([1., 2., 3.]), indices=tensor([0, 0, 0]) ) a.max(0) torch.return_types.max( values=tensor([ 8., 9., 10.]), indices=tensor([2, 2, 2]) )
Как мы помним, нейронная сеть состоит из слоёв, слои состоят из нейронов, а нейрон содержит на входе связи с весами в виде простых чисел. Вес задаётся обычным числом, тогда входящие связи в нейрон можно описать последовательностью чисел – вектором (одномерным массивом или списком), длина которого и есть количество связей. Так как сеть полносвязная, то все нейроны этого слоя связаны с предыдущим, а, следовательно, демонстрирующие их вектора имеют тоже одинаковую длину, создавая список равных по длине векторов – матрицу. Это удобное и компактное представление слоя, оптимизированное для использования на компьютере. На выходе нейрона имеется функция активации (сигмойда или, ReLU для глубоких и сверхглубоких сетей), которая определяет, выдаст на выходе нейрон значение или нет. Для этого необходимо применить её к каждому нейрону, то есть к каждому столбцу: мы уже видели операцию к столбцам.
Способы ускорения обучения
Пробежимся по истории развития вычислительных систем которая давала вычислительную основу для развития искусственного интеллекта:
* 1642 – механические вычислительные машины, * 1940 – ламповые вычислительные машины, * 1955 – транзисторные вычислительные машины, * 1965 – компьютеры на интегральных схемах, * 1980 – компьютеры с центральными процессорами, * 1995 – многоядерные видеокарты, * 2006 – компьютеры с многоядерными процессорами, * 2017 – компьютеры с матричными процессорами.