Читаем Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData полностью

И видно, что до 2017 года тенденция сохранялась. Понятно, что, конкурентом крупнейшего производителя в первую очередь является он сам и вывод последних разработок менеджментом в гарантированном горизонте их работы в должности. Но и никто не отменял, что отлаживать нужно технологические процессы и архитектуры. С другой стороны, эстафету гонки в Boost за максимальную частоту продолжается тенденция роста максимальной частоты. Boost – это повышение частоты процессора до максимума в текущих условиях. Максимум определяется стабильностью процессора (отсутствием ошибок), которая зависит от стабильности электропитания, качества охлаждения, окружающей температуры и качества процессора, величина которая плавает в определённых пределах. Процессор определяет, не наступили пограничные ли параметры, а если нет – то повышает свою частоту. Технология используется как в процессорах от Intel (Intel Turbo Boost Technology 2.0), так и в процессора от AMD (Precession Boost 2 Curve).

Ускорить вычисления можно разными способами и самый простой в начале оказался за счёт ускорения выполнения отдельных операций. Сами операции состоят из простейших оперций – И, ИЛИ и НЕ, которые реализуются транзисторами. Эти транзиторы переключаются управляющим сигналом, переходя к слудующему сигналу, тем самым простейшие опрерации сдвигаются ("проталкиваются") управляющим сигналом. Этот упрвляющий сигнал позволяет синхронизировать все операции в процессоре и поэтому его частотм назвается опорной частотой центрального процессора. Для других систем, скорость которых не зависит от процессора могут применяться отдельные кварцевые генераторы опорной частоты, например, для шины PCI-Express и мостов. В современных процессорах контрукцией их заложено выполнение нескольлких операций за один тактовый такт. И действительно, задав в два раза большую частоту мы можем произвести в два раза больше операций. Так в 1971 процессор Intel 4004 работал на чистоте 500—740 кГц, а в 1993 процессор Intel Pentium на частотах 60—300 МГц, что больше в 120 раз на минимуме и 400 на максимуме. Проблемой является то, что токи с большими частотами имеют высокое тепловыделение. Так Intel 8008 с частотой 2—4 МГц получил стальную крышку, а размеры стальной крышки росли с ростом подложки, а на Intel Pentium II с частотами 233—450 появился алюминиевый радиатор, на Intel Pentium III с частотами 0.4—1.4 ГГц уже появился кулер (вентилятор) над радиатором, а с Pentium 4 более 3 ГГц уже шли массивные радиаторы 83х68 мм с большим вентилятором 60х60 мм и зачастую с медно-алюминиевыми рёбрами и основанием, при частотах выше 4 ГГц требовалось водяное охлаждение с внешним радиатором. Безусловно, не только при увеличении частоты из-за выделения теплоты требуется уменьшения технологического процесса, но и других физических процессов. Но это всё на десктопных рабочих станциях, а для переносных – единственным решениям оставалось уменьшать частоты до примерно 2.5 ГГц. Посмотрим на тех. процессы: сравнивать имеет смысл только в рамках одной компании, ориентируясь на абсолютные единицы в начале таблицы, а ближе к концу – на относительные:

год, модель: технол. процесс 1971, 4004: 10 мкм 1972, 4040: 10 мкм 1972, 8008: 10 мкм 1976, 8085: 3 мкм 1978, 8086: 3 мкм 1979, 8088: 3 мкм 1982, 80188: 3 мкм 1985, 80386: 1.5 мкм 1991, 80486: 1.0 мкм 1993, Pentium: 0.8 мкм 1997, Pentium II: 0.35 мкм 1999, Pentium III: 0.13 мкм 2000, Pentium 4: 0.18 мкм 2006, Core 2: 0.065 мкм 2008, Core i7: 0.045 мкм 2017, Core i9: 0.014 мкм 2021, Core i9-11: 0.010 мкм

Для Apple:

2017, Apple A11: 0.010 мкм 2018, Apple A12: 0.007 мкм 2020, Apple A15: 0.005 мкм 2022, Apple A16: 0.003 мкм (планы Apple) 2027, 0.002 мкм (тестовый образец от IBM) 2029, 0.0014 мкм (предсказания)

Перейти на страницу:

Похожие книги

Искусство программирования для Unix
Искусство программирования для Unix

Книги, подобные этой, редко появляются на прилавках магазинов, поскольку за ними стоит многолетний опыт работы их авторов. Здесь описывается хороший стиль Unix- программирования, многообразие доступных языков программирования, их преимущества и недостатки, различные IPC-методики и инструменты разработки. Автор анализирует философию Unix, культуру и основные традиции сформированного вокруг нее сообщества. В книге объясняются наилучшие практические приемы проектирования и разработки программ в Unix. Вместе с тем описанные в книге модели и принципы будут во многом полезны и Windows-разработчикам. Особо рассматриваются стили пользовательских интерфейсов Unix-программ и инструменты для их разработки. Отдельная глава посвящена описанию принципов и инструментов для создания хорошей документации.Книга будет полезной для широкой категории пользователей ПК и программистов.

Эрик Стивен Реймонд

ОС и Сети / Программирование / Прочая компьютерная литература / Книги по IT