Читаем Машины создания полностью

Это принципиальное утверждение (среди других), что не может быть определено точное местоположение частицы в течение любого отрезка времени. Это ограничивает то, что молекулярные машины могут делать, также, как это ограничивает то, что может делать что угодно еще. Тем не менее, вычисления показывают что принцип неопределённости накладывает мало существенных ограничений на то, насколько хорошо атомы могут помещаться на какое-то место, по крайней мере для тех целей, которые обрисовываются здесь. Принцип неопределённости делает местоположение электронов довольно расплывчатым, и в действительности эта расплывчатость определяет сам размер и структуру атомов. Атом как целое, однако, имеет сравнительно определённое местоположение, установленное своему относительно массивному ядру. Если бы атомы не сохраняли своё положение сравнительно хорошо, молекулы бы не существовали. Квантовой механики не требуется, чтобы доверять этим заключениям, поскольку молекулярные машины в клетке демонстрируют, что молекулярные машины работают.

Не сделают ли тепловые вибрации молекул молекулярные машины неработоспособными или слишком ненадёжными, чтобы их использовать?

Тепловые колебания причинят большие проблемы чем принцип неуверенности, однако здесь снова существующие молекулярные машины непосредственно демонстрируют, что молекулярные машины могут работать при обычных температурах. Несмотря на тепловые колебания, механизмы копирования ДНК в некоторых клетках делают меньше чем одну ошибку на 100 000 000 000 операций. Чтобы достичь такой точности, однако, клетки используют машины (такие как фермент ДНК-полимераза I), которая проверяет копию и исправляет ошибки. Для ассемблеров вполне может быть необходима аналогичные способности проверки и исправления ошибок, если они предназначены выдавать надёжные результаты.

Не будет ли радиация разрушать молекулярные машины или делать их непригодными для использования?

Радиация высокой энергии может нарушать химические связи и разрушать молекулярные машины. Живые клетки еще раз показывают, что решения существуют: они работают в течение лет, восстанавливая и заменяя поврежденные радиацией части. Однако поскольку каждая отдельная машина такая крошечная, она представляет собой маленькую цель для радиации и радиация редко в неё попадает. Всё же, если система наномашин должна быть надёжна, то она должна выдерживать определённое количество повреждений, а повреждённые части должны регулярно чиниться или заменяться. Этот подход к надёжности хорошо знаком разработчикам самолётов и космических кораблей.

Эволюция не сумела произвести ассемблеры, не говорит ли это о том, что они являются либо невозможными, либо бесполезными?

Отвечая на предыдущие вопросы, мы отчасти ссылались на уже работающие молекулярные машины клеток. Они представляют собой простое и мощное доказательство, что законы природы позволяют маленьким группам атомов вести себя как управляемым машинам, способным строить другие наномашины. Однако вопреки тому, что они в основе напоминают рибосомы, ассемблеры будут отличаться от всего, что находится в клетках; хотя они состоят в обычных движениях молекул и реакциях, то, что они делают, будет иметь новые результаты. Например, ни одна клетка не производит алмазного волокна.

Мысль, что новые виды наномашин дадут новые полезные способности, может казаться потрясающей: за все миллиарды лет развития жизнь в основе всегда полагалась только на белковые машины. Но говорит ли это о том, что усовершенствования были невозможны? Эволюция идёт небольшими изменениями, и эволюция ДНК не может легко заменить ДНК. Так как система ДНК-РНК-рибосома специализирована для построения белков, жизнь не имела никакой реальной возможности развить альтернативный вариант. Любой производственный менеджер хорошо может оценить причины этого; жизнь – больше чем фабрика, она не может себе позволить прекратить деятельность, чтобы заменить свои системы на новые.

Улучшенные молекулярные машины должны нас удивлять не больше, чем сплав стали, который в десять раз прочнее кости, или медные провода, передающие сигналы в миллион раз быстрее нервов. Автомобили обгоняют гепардов, реактивные самолеты летают быстрее соколов, и компьютеры уже считают быстрее самых талантливых из людей. Будущее даст новые примеры улучшений в биологической эволюции, из которых второе поколение наномашин будет лишь одним.

Перейти на страницу:

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Тайны нашего мозга или Почему умные люди делают глупости
Тайны нашего мозга или Почему умные люди делают глупости

Мы пользуемся своим мозгом каждое мгновение, и при этом лишь немногие из нас представляют себе, как он работает. Большинство из того, что, как нам кажется, мы знаем, почерпнуто из «общеизвестных фактов», которые не всегда верны...Почему мы никогда не забудем, как водить машину, но можем потерять от нее ключи? Правда, что можно вызубрить весь материал прямо перед экзаменом? Станет ли ребенок умнее, если будет слушать классическую музыку в утробе матери? Убиваем ли мы клетки своего мозга, употребляя спиртное? Думают ли мужчины и женщины по-разному? На эти и многие другие вопросы может дать ответы наш мозг.Глубокая и увлекательная книга, написанная выдающимися американскими учеными-нейробиологами, предлагает узнать больше об этом загадочном «природном механизме». Минимум наукообразности — максимум интереснейшей информации и полезных фактов, связанных с самыми актуальными темами; личной жизнью, обучением, карьерой, здоровьем. Приятный бонус - забавные иллюстрации.

Сандра Амодт , Сэм Вонг

Медицина / Научная литература / Прочая научная литература / Образование и наука
Управление персоналом
Управление персоналом

В учебнике рассмотрены эволюция, теория, методология науки управления персоналом; стратегия и политика работы с людьми в организации; современные технологии их реализации; управление поведением работника; психофизиологические аспекты трудовой деятельности; работа с персоналом в условиях интернационализации бизнеса; формирование современных моделей службы персонала.Специфика учебника – знакомство читателя с дискуссионными проблемами кадрового менеджмента, перспективами его развития, прикладными методиками, успешно реализуемыми на предприятиях Германии, Австрии, Голландии, Ирландии, Греции, – стран, в которых авторы учебника неоднократно проходили длительные научные и практические стажировки.Для студентов, магистрантов, специализирующихся на изучении вопросов управления персоналом, профильных специалистов служб персонала, руководителей предприятий и организаций.Рекомендовано УМО вузов России по образованию в области менеджмента в качестве учебника для студентов высших учебных заведений, обучающихся по специальностям «Менеджмент организации» и «Управление персоналом».

Коллектив авторов

Научная литература / Прочая научная литература / Образование и наука