Читаем Математическая планета. Путешествие вокруг света полностью

СЕЛЬСКАЯ МАТЕМАТИКА

В конце 1980-х годов профессор Гвида де Абреу изучила математические методы, которые применяли крестьяне на северо-востоке Бразилии. Расхождения между этими методами и сугубо академическими представлениями препятствовали внедрению новых аграрных технологий.

К примеру, площади треугольников крестьяне вычисляли как произведение среднего арифметического длин двух сторон треугольника на половину третьей, то есть по формуле (х + уz/ 4.

Этот метод имеет свои недостатки. Для равностороннего треугольника со стороной х площадь будет равна S = х2/2, что отличается от фактического значения, равного (х2√3)/4. Для прямоугольного треугольника с катетами длиной 30 и 40 метров и гипотенузой длиной 50 метров в зависимости от выбора сторон возможны три разных результата. Истинное значение площади составляет 600 м2, а значения, полученные по методу бразильских крестьян, равны: S1 = 800 м2, S2 = 875 м2, S3 = 675 м2.



В последнем случае мы вычислили среднюю длину двух больших сторон треугольника и получили наиболее точный результат. Возможно, так и следует действовать во всех случаях, тем более что этот метод, несомненно, намного удобнее применять на практике, чем тригонометрические расчеты. Кроме того, основой системы мер, которую использовали крестьяне, были единицы под названием брага, куб и конта. Брага, стандартная мера длины, составляла от 2 до 2,20 м и измерялась при помощи посоха. Куб определялся как площадь квадрата с длиной стороны в одну брагу, конта — как площадь квадрата с длиной стороны в 10 браг.

Глава 2

Как считать быстрее и лучше

Письменный счет и вычисления


Что бы вы подумали, если бы увидели на тротуаре бумажку с такими надписями?



Это свободная интерпретация шумерской таблички возрастом более 4600 лет, найденной в городище Шуруппак на территории Ирака. Как отмечает Джордж Ифра (Марракеш, 1947), эта табличка представляет собой древнейшую запись деления чисел. Математик и историк Джордж Ифра — автор объемных и очень подробных трудов о системах счисления во всем мире, созданных задолго до появления математической науки.

В табличке идет речь о разделе ячменя между несколькими людьми. В левом столбце указано исходное количество ячменя, которое нужно разделить: один амбар и семь сил (один амбар равнялся 1152 000 сил). В правом столбце приведены необходимые расчеты. Смысл текста на табличке таков: после того как амбар ячменя был разделен между несколькими людьми, каждому досталось по 7 сил. Всего было 164571 человек, 3 силы оказались лишними.

Числа на табличке записаны при помощи геометрических фигур. Маленький конус обозначал единицу, круг — 10 единиц, большой конус — 60 единиц, большой конус с отверстием — 600, большой круг — 3600, большой круг с отверстием — 36 000 единиц.

Делимое 1152000 раскладывается на степени 60 следующим образом:

1152 000 = 5·603 + 2·10·602.

Но вместо того, чтобы записать его в таком виде, автор таблички, который не умел представлять большие числа, применил самое большое число, известное в ту эпоху, то есть 36000. Если мы хотим записать число 1152000 при помощи кругов с отверстиями, нам потребуются 32 круга:

1152 000 = 32·36 000.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука