Читаем Математическая планета. Путешествие вокруг света полностью

Если п — натуральное число, обладающее этим свойством, то следующее за ним число, n + 1, также будет обладать этим свойством. В самом деле, если n четное, то ни одно из составляющих его слагаемых не будет равно 20 = 1. Следовательно, именно эту степень двойки нужно будет добавить к n, чтобы получить следующее число, + 1. Таким образом, + 1 будет суммой степеней двойки. Если же нечетное, то его разложение на сумму степеней двойки будет оканчиваться 20. Чтобы получить из следующее число, n + 1, к нему нужно будет добавить единицу, то есть 20. Но в разложении этого числа уже есть одна единица, поэтому получим 20 + 20 = 1 + 1 = 2 = 21. Если слагаемое 21 уже фигурировало в разложении, мы получим новое слагаемое, равное 22 и так далее. Результат в любом случае будет представлять собой сумму степеней двойки.

Запишем первые 10 натуральных чисел в виде сумм степеней двойки, чтобы вы могли увидеть закономерность, которой они подчиняются.



Древние египтяне выполняли деление по схожему алгоритму, но в обратном порядке, то есть с помощью умножения. К примеру, при делении 92 на 9 они определяли число, на которое нужно умножить 9, чтобы получить 92. Сначала необходимо составить таблицу чисел. В левом столбце запишем последовательность степеней двойки, в правом столбце будем раз за разом удваивать 9, пока оно не превысит 92.



Теперь выберем из правого столбца числа, которые в сумме дают 92. Так как выбрать такие числа нельзя, 92 не делится на 9 нацело. Ближайшая сумма равна 18 + 72 = 90. Следовательно, результат деления равен 2 + 8 = 10 (сумме степеней двойки, соответствующих числам 18 и 72), остаток от деления равен 2.


Счет в разных регионах


Для счета необходимо дать величинам названия, а также предусмотреть символы для их обозначения. Сегодня символы, обозначающие цифры, являются практически универсальными и используются во всех уголках планеты. Названия чисел и слова, используемые при счете, также эквивалентны. Однако даже самый точный перевод не всегда может обеспечить соответствие исходных понятий.

Двести лет назад многие европейцы думали, что африканцы способны считать разве что до 10. Эту точку зрения опровергли некоторые торговцы XVIII века и исследователи-антропологи в XX столетии.

Можно было подумать, что народ кпелле, живший в центральной Либерии и Гвинее, не умел обращаться с числами только потому, что использовал для выполнения арифметических действий кучки камней. Однако в результате исследования, которое провели Гэй и Коул, оказалось, что кпелле точнее оценивают число камней в кучках разных размеров, чем студенты Йельского университета.

* * *

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука
Математика для любознательных
Математика для любознательных

Эта книга основателя жанра научно-занимательной литературы, российского ученого Я. И. Перельмана объединяет в себе две работы автора: «Занимательная математика» и «Занимательная арифметика». Она ставит целью привить своему читателю вкус к изучению математики, вызвать у него интерес к самостоятельным творческим занятиям и приобщает к миру научных знаний. Книга содержит увлекательные рассказы-задачи с необычными сюжетами на математические темы, любопытными примерами из повседневной жизни, головоломки, шуточные вопросы и опыты - и все это через игру, легко и непринужденно.Постановка задач, их арифметические и логические методы решений и вытекающие из решений выводы вызовут интерес не только у юных начинающих математиков, знакомых лишь с элементами арифметики, но и у хорошо разбирающихся в математике читателей.Авторская стилистика письма соответствует 20-м годам двадцатого века и сохранена без изменений.

Яков Исидорович Перельман

Математика / Образование и наука