Читаем Математические головоломки и развлечения полностью

Провозившись каких-нибудь шесть или семь часов, я с помощью сотрудников нашей лаборатории в конце концов сумел правильно склеить гексагексафлексагон. С тех пор вся наша лаборатория не перестает удивляться.

Сейчас мы встали перед проблемой. Как-то утром один из наших сотрудников, занимаясь от нечего делать складыванием гексагексафлексагона, не заметил, как кончик его галстука попал внутрь этой игрушки. При каждом последующем перегибании галстук несчастного все больше и больше втягивался внутрь флексагона. После шестого перегибания исчез сам сотрудник.

Разумеется, мы тут оке начали лихорадочно перегибать флексагон, но так и не обнаружили никаких следов нашего товарища, зато мы нашли шестнадцатую поверхность гексагексафлексагона.

Возникает вопрос: должна ли вдова исчезнувшего сотрудника получить компенсацию за все время его отсутствия или же мы можем с полным основанием сразу считать его умершим? Ждем вашего совета.

НЕЙЛ АПТЕГРОУВ

Лаборатории Аллена В. Дюмона

Клифтон, штат Нью-Джерси


Сэр!

Письмо об исчезновении внутри гексагексафлексагона сотрудника Лабораторий Аллена В. Дюмона, напечатанное в мартовском выпуске вашего журнала, помогло нам решить одну загадку.

Однажды, занимаясь на досуге складыванием гексагексафлексагона самой последней модели, мы заметили, что из него торчит кусочек какой-то пестрой материи. При последующих перегибаниях флексагона из него показался незнакомец, жующий резинку.

К сожалению, он был очень слаб и из-за частичной потери памяти не мог объяснить нам, каким образом оказался внутри флексагона. Наша национальная диета из овсянки, хэггиса[6] и виски поправила его здоровье. Он стал всеобщим любимцем и откликается на имя Экклз.

Нас интересует, нужно ли нам вернуть его и если да, то каким способом? К сожалению, Экклза бросает в дрожь при одном лишь виде гексагексафлексагона, и он решительно отказывается «складываться».

РОБЕРТ М. ХИЛЛ

Королевский колледж науки и техники

Глазго, Шотландия

Глава 2. ФОКУСЫ С МАТРИЦАМИ

Магические квадраты занимают воображение математиков уже более двух тысячелетий. В традиционном магическом квадрате суммы чисел в каждом столбце, каждом ряду и по каждой диагонали одинаковы. Совершенно иной тип магического квадрата изображен на рис. 8.



Рис. 8


На первый взгляд может показаться, что он составлен без всякой системы и числа в нем расположены случайным образом.

Тем не менее этот квадрат обладает магическим свойством, вызывающим удивление не только у человека, далекого от науки, но и у профессионала-математика.

Это свойство лучше всего демонстрировать с помощью пяти монет и 20 бумажных фишек. Попросите кого-нибудь выбрать любое из чисел, вписанных в клетки квадрата. Положите на это число монету и закройте фишками все остальные числа, стоящие в одной строке и одном ряду с выбранным.

Попросите теперь того же человека выбрать любое из чисел, вписанных в незакрытые еще клетки, положите на выбранное число другую монету, а числа, стоящие в той же строке и в том же столбце, что и выбранное во второй раз число, снова закройте фишками. Повторив эту процедуру еще два раза, вы обнаружите, что незакрытой осталась лишь одна клетка. Положите на эту клетку пятую монету.

Если теперь вычислить сумму чисел, накрытых монетами (напомним, что на первый взгляд числа кажутся выбранными наудачу), то она будет равна 57. Это не случайно: сколько бы вы ни повторяли эксперимент, сумма всегда будет одной и той же.

Если вы любите решать математические головоломки, то можете остановиться на этом месте, чтобы попытаться самостоятельно раскрыть секрет удивительного квадрата.

Перейти на страницу:

Похожие книги