Читаем Математические головоломки профессора Стюарта полностью

lnS = lnsec π/3 + lnsec π/4 + lnsec π/5 + … + lnsec π/n.


Пока x мал, lnsec x ~ x²/2, так что этот ряд можно сравнить с рядом


1/3² + 1/4² + 1/5² + … + 1/n²,


который при n, стремящемся к бесконечности, сходится. Следовательно, lnS конечен, так что и S конечно. Сумма членов ряда до n = 1 000 000 дает 8,7 в качестве разумной оценки предела.

Я узнал об этой задаче, а также о приведенном ответе из книжного обзора Харольда Боаса[39]. Этот автор нашел эту задачу в книге «Математика и воображение» Эдварда Каснера и Джеймса Ньюмена, изданной в 1940 г. Он пишет: «Может быть, если этот рисунок воспроизвести в достаточном числе книг, этот забавный пример станет частью стандартного набора задач занимательной математики».

Я стараюсь, Харольд.

Приключения гребцов

Мы с Сомсом нашли еще два варианта распределения весел, не считая зеркально симметричных:



– Несмотря на всю механическую сложность задачи, – сказал Сомс, – в конечном итоге она сводится к простой арифметике. Нам нужно разделить числа от 0 до 7 на две группы – так, чтобы сумма чисел в каждой из них равнялась 14.

– Если мы знаем один такой набор, то второй определяется автоматически и тоже дает сумму 14.

– Да, Ватсап, это очевидно: просто берем числа, которые не вошли в первый набор.

– Я согласен, что это тривиально, Сомс, но это подразумевает, что мы можем использовать набор, содержащий 0; это означает, что заднее весло мы размещаем слева (при необходимости мы всегда можем взять зеркально симметричный вариант). Таким образом мы снижаем число вариантов, которые необходимо рассмотреть.

– Это правда.

Теперь рассуждения шли практически сами собой.

– Если в набор входит также 1, – заметил я, – то остальные два числа в сумме дают 13, так что это должны быть 6 и 7, что дает 0167. Если там нет 1, но есть 2, то единственный возможный вариант – 0257. Если вариант начинается с 03, возникает два следствия: 0347 и 0356. Вариант, начинающийся с 04, можно не рассматривать, поскольку получить 10 сложением двух чисел из 5, 6, 7 невозможно. Аналогично отвергаем 05, 06 и 07.

– Итак, вы пришли к выводу, – подвел итог Сомс, – что единственные возможные варианты, исключая симметрию право-лево, – это


0167 0257 0356 0347


Но 0257 – это немецкий вариант, а 0347 – итальянский. Остаются два, те самые, что выложил из спи…

Он внезапно вскочил и напрягся.

– Святые угодники!

– Что, Сомс?

– Мне только что пришло в голову, Ватсап, извините за каламбур, что эта спичка… – он помахал передо мной какой-то горелой спичкой… – это не редкая ранняя спичка Конгрива, как я воображал, но одна из бесшумных спичек Ирини. Когда подорвался его профессор химии, Ирини пришло в голову заменить бертолетову соль в головке спички двуокисью свинца.

– Ах. Это имеет значение, Сомс?

– Еще какое, Ватсап. Это позволяет пролить совершенно новый свет… опять же, извините за каламбур… на одно из самых невероятных наших нераскрытых дел.

– Замечательное дело перевернутого чайника! – воскликнул я.

– Вот именно, Ватсап! Итак, если в ваших записях сохранилась информация о том, справа или слева от мумифицированного попугая лежала та спичка…

Анализ Сомса основан на:

Maurice Brearley, 'Oar arrangements in rowing eights', in Optimal Strategies in Sports (ed. S. P. Ladany and R. E. Machol), North-Holland 1977.

John Barrow, One Hundred Essential Things You Didn't Know You Didn't Know, W. W. Norton, New York 2009.

Как и предупреждал Сомс, это лишь первоначальный упрощенный подход к весьма сложной проблеме.

Кстати говоря, Университетская гонка 1877 г. закончилась ничьей – единственный случай в истории этих состязаний.

Кольца из правильных многогранников

Джон Мейсон и Теодорус Деккер нашли более простые методы доказательства невозможности, чем те, которыми пользовался Сверчковский. При склеивании двух одинаковых тетраэдров гранями каждый из них становится как бы отражением другого в их общей грани.



Начнем с одного тетраэдра. У него четыре грани и, соответственно, четыре таких отражения; назовем их r1, r2, r3 и r4. Каждое отражение ставит все на прежнее место, если проделать операцию дважды, так что r1r1 = e, где e – это нулевая трансформация («ничего не делать»). То же можно сказать и об остальных отражениях. Таким образом, все комбинации нескольких отражений представляют собой произведения вроде такого:


r1r4r3r4r2r1r3r1,


где последовательность индексов 14342131 может быть любой последовательностью чисел 1, 2, 3, 4, где ни одно число не встречается два раза подряд. К примеру, последовательности 14332131 быть не может. Причина в том, что здесь r3r3 – это одно и то же отражение, проделанное дважды, то есть e, которое не производит никакого действия и потому может быть исключено.

Если такая цепочка замыкается, то очередное отражение, примененное к крайнему тетраэдру в цепочке, дает тетраэдр, который совпадает с первоначальным. Таким образом, мы получаем уравнение вида


r1r4r3r4r2r1r3r1 = e


Перейти на страницу:

Похожие книги

Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг