Я с головой зарылся в несколько высоких бумажных башен и в конце концов отыскал свой блокнот под чучелом какого-то скунса.
– Мы дошли до 32, Сомс, если учесть замечание, которое вы мимоходом сделали во время поиска выражения для 7.
– И разумеется,
– сказал он. – Очень хорошо. Таким образом, в идеале нам нужно выразить числа 68, 103, 138 и т. д. через две единицы. Но мы можем пользоваться при этом готовыми выражениями для маленьких чисел, если так будет удобнее. Лишь бы разница между двумя соседними числами не была больше 35.
Несколько часов усиленных расчетов – и новые кипы бумаги – дали нам короткий, но важный список:
Но на этом все и застопорилось.
– Возможно, я слишком поспешно отказался от использования двойных факториалов, Ватсап.
– Очень может быть, Сомс.
Сомс кивнул и записал:
105 = 7!!
Затем, в порыве внезапного озарения, добавил:
И воскликнул:
– Если нам удастся найти способ записать 18 при помощи двух единиц, то доступный нам диапазон вокруг целого числа, выражаемого через две единицы, увеличится: мы тогда сможем гарантировать число от
– Мне кажется, пора подвести промежуточный итог, – сказал я и еще раз внимательно просмотрел наши накопившиеся каракули. – По-моему, мы уже выразили через четыре единицы все числа от 1 до 33. Далее
требуют только двух единиц, так что мы немедленно заполняем все пропуски между 26 и 61. Возникает пробел на 62 (потому что это 44 + 18, а на выражении 18 через две единицы мы застряли), но 63 и 64 у нас есть. Далее, опираясь на 80, мы можем добраться до 97. На 98 опять возникает пробел, но 99 и 100 можно получить.
– И намного проще, кстати говоря, – заметил Сомс:
99 = 11/0,1 × 0,1;
100 = 1/(0,1 × 0,1);
101 = 1/(0,1 × 0,1) + 1.
– Таким образом, у нас есть все вплоть до 100, – сказал я, – за исключением 62 и 98.
– Но о 98 позаботится 105, вместе со всеми остальными числами вплоть до 122, – сказал Сомс.
– О, я и забыл, что у нас есть 105 из двух единиц.
– А поскольку 120 = 5! то есть тоже выражается через две единицы, мы можем добраться до 137. Более того, у нас есть еще 139 и 140.
– Так что единственные пробелы до 140 – это 62 и 138, – сказал я.
– Похоже на то, – сказал Сомс. – Интересно, можно ли заполнить эти пробелы каким-то другим способом?
Номера такси
Сриниваса Рамануджан – индийский математик-самоучка с поразительным талантом к формулам, как правило очень странным формулам, обладавшим, однако, своеобразной необычной красотой. В 1914 г. математики Годфри Харолд Харди и Джон Эденсор Литтлвуд из Кембриджа привезли его в Англию. К 1919 г. у него уже были неизлечимо больные легкие, и в 1920 г. он умер в Индии. Харди писал:
«Помню, как я однажды поехал навестить его, когда он лежал больной в Путни. Я приехал в такси номер 1729 и заметил вскользь, что номер этот показался мне довольно скучным и что я надеюсь, что это не дурное предзнаменование. „Нет, – ответил он, – это очень интересный номер; это наименьшее число, которое можно выразить в виде суммы двух [положительных] кубов двумя разными способами“».
Наблюдение о том, что
1729 = 1³ + 12³ = 9³ + 10³,
впервые опубликовал Бернар Френикль де Бесси в 1657 г. Если разрешить отрицательные кубы, то наименьшим таким числом будет
91 = 6³ + (–5)³ = 4³ + 3³.
Специалисты по теории чисел обобщили эту концепцию, заявив, что
В 1979 г. Харди и Э. М. Райт доказали, что некоторые числа могут быть выражены в виде суммы произвольно большого числа положительных кубов, так что Ta (
Ta (1) = 2 = 1³ + 13;
Ta (2) = 1729 = 1³ + 12³ = 9³ + 10³;
Ta (3) = 87539319 = 167³ + 436³ = 228³ + 423³ = 255³ + 414³;