Читаем Математические головоломки профессора Стюарта полностью

– А не можем ли мы доказать, что любое число можно получить из четырех – или меньше – единиц путем подбора полов и потолков повторяющихся квадратных корней из факториалов?

– Вполне возможно, Ватсап, вполне возможно, но я, откровенно говоря, не вижу пути к такому доказательству, к тому же напряжение от такого количества ментальной арифметики начинается сказываться.

Прямо на глазах он вновь начал погружаться в депрессию. В отчаянии я предложил:

– Вы могли бы попробовать логарифмы, Сомс.

– Я думал о них в самом начале, Ватсап. Вы, вероятно, будете удивлены, но использование логарифмов экспоненциальной функции и функции потолка – ничего больше – позволяет выразить любое положительное целое число через одну-единственную единицу.

– Нет-нет, я говорил об использовании логарифмов для облегчения вычислений, а не в формулах… – но Сомс не обратил внимания на мои протесты.

– Вспомните, что представляет собой экспоненциальная функция:

exp (x) = ex, где e = 2,71828…

– Обратным по отношению к этой функции является натуральный логарифм


ln (x) = значение y, удовлетворяющее exp (y) = x.


– Не правда ли, Ватсап?

Я подтвердил, что, насколько мне известно, дело обстоит именно так.

– Тогда мы просто заметим, что



что несложно доказать.

Я посмотрел на него с открытым ртом, но сумел-таки выдавить из себя полузадушенное:

– Конечно, Сомс.

– В результате мы можем последовательно записать:



и…

Я поспешно схватил его за правую руку.

– Да, Сомс, я понимаю. Это слегка замаскированная версия метода Пеано, который мы ранее отвергли именно из-за его тривиальности.

– Так что, Ватсап, если разрешить экспоненциальные выражения и логарифмы, игра сразу же закончится.

Я согласился – не без грусти, поскольку он сразу же взял свой кларнет и вновь завел бесконечную пьесу какого-то малоизвестного восточноевропейского композитора, в которой не было ни ритма, ни мелодии. Звук походил на вопль кота, попавшего между валками для отжимания белья. Кота, которому медведь наступил на ухо. Притом охрипшего.

Черное настроение поглотило Сомса окончательно и бесповоротно.

На этом заканчивается «Знак одного».

Правда, я так и не рассказал вам, что такое субфакториал. Ну, ничего, в следующий раз.

Серьезный беспорядок

Пора объяснить, что такое субфакториалы.

Предположим, что у каждой из n дам имеется шляпка. Все они складывают свои шляпки в одно место, затем каждая из них берет какую-нибудь случайную шляпку и надевает на себя. Сколькими способами можно это сделать, чтобы ни на одной из дам не оказалось ее собственной шляпки? Такое размещение называется беспорядком.

К примеру, если дам три – скажем, Александра, Бетани и Валерия, – то шляпки между ними можно распределить шестью способами:


АБВ АВБ БАВ БВА ВАБ ВБА.


Для АБВ и АВБ Александра получает свою собственную шляпку, так что беспорядка не возникает. Для БАВ собственную шляпку получает Валерия, а для ВБА – Бетани. Это оставляет нам два варианта беспорядка: БАВ и ВАБ.

Если дам четыре – предположим, к группе присоединилась еще Грейс – существует 24 варианта расстановки:



однако в 15 из них (вычеркнутые) кто-нибудь из дам получает свою собственную шляпку. (Убираем все с А в первой позиции, с Б во второй, с В в третьей и с Г в четвертой.) В результате получаем 9 вариантов беспорядка.

Число вариантов беспорядка из n объектов и есть субфакториал (обозначается! n или n ¡). У этого понятия множество определений. Простейшее из них, вероятно,



Первые значения этой величины


Бросание монетки – несправедливый жребий

Бросание монетки – фундамент теории вероятностей, поскольку орел или решка выпадают на ней с равной вероятностью. Бросание монетки считается живым воплощением случайности. С другой стороны, моделью монетки может служить простая механическая система, и ее поведение полностью определяется начальными условиями броска – в первую очередь вертикальной скоростью, начальной скоростью вращения и ориентацией оси вращения. Это, собственно говоря, делает движение монетки неслучайным. Так откуда же берется случайность в бросание монетки? Я вернусь к этому вопросу после описания открытия, имеющего ко всему этому непосредственное отношение.



Перси Диаконис, Сьюзен Холмс и Ричард Монтгомери показали, что на самом деле бросание монетки – не совсем «честная» жеребьевка. Существует небольшой, но заметный сдвиг вероятности: при бросании монетка с несколько большей вероятностью падает на ту же сторону, на которой она лежала на большом пальце. В реальности вероятность ее падения именно в таком положении составляет приблизительно 51 %. В своем исследовании ученые предполагали, что монетка при падении не подскакивает, что разумно при падении на землю, особенно в траву, или для того случая, когда ее ловят на лету, но не тогда, когда она падает на деревянный стол.

Перейти на страницу:

Похожие книги

Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг