Читаем Математические головоломки профессора Стюарта полностью

Алиса и Боб перевели свою методику игры на язык математики, выделив ее существенные черты. Они представили карточную колоду согласованным набором из 52 чисел. Кодовые замки Алисы обозначаются шифром A, известным только ей. Это функция, математическое правило, превращающее число карты c в другое число Ac. (Я беру на себя вольность не писать всякий раз A (c), чтобы не пришлось говорить о «композиции» функций.) Алисе известен также обратный шифр A–1, который переводит Ac обратно в c. То есть

A−1Ac = c.

Боб не знает ни A, ни A–1.

Аналогично замки Боба соответствуют шифрам B и B–1, известным только ему, таким, что B–1Bc = c.

С учетом этих предварительных замечаний метод соответствует следующей процедуре:

1. Алиса пересылает все 52 числа Ac1, …, Ac52 Бобу. Он понятия не имеет, каким картам эти числа соответствуют; по существу, Алиса перетасовала колоду.

2. Боб «сдает» пять карт Алисе и пять самому себе. Он высылает Алисе ее карты. Чтобы упростить запись, рассмотрим лишь одну из этих карт, обозначив ее Ac. Алиса может выяснить значение c, применив к полученному числу A–1, так что она знает, какие карты ей сданы.

3. Бобу необходимо выяснить, какие карты он выбрал для себя, но только Алиса знает, как извлечь истинные значения из зашифрованных. Но Боб не может послать свои карты Алисе, потому что тогда она будет знать, что у него в руке. Поэтому к каждой своей карте Ad он применяет свое шифровальное правило, чтобы получить BAd, и высылает результат такой обработки Алисе.

4. Алиса может вновь применить свое правило A–1, чтобы «снять замок», но на этот раз ее ждет засада: результат будет равен A–1BAd.

В обычной алгебре мы могли бы поменять A–1 и B местами, чтобы получить

BA–1Ad,

что равняется Bd.

После этого Алиса могла бы выслать результат обратно Бобу, а тот, в свою очередь, применил бы B–1, чтобы получить d.

Однако функции нельзя переставлять таким образом. К примеру, если Ac = c + 1 (и, соответственно, A–1c = c – 1) и Bc = c², то A–1Bc = Bc – 1 = c² 1, тогда как


BA–1c = (A –1c)² = (c – 1)² = c² 2c + 1,


то есть совсем не то же самое.

Чтобы обойти это препятствие, следует избегать подобных функций и выбирать такие методы шифрования, для которых A–1B = BA–1. В этом случае говорят, что для функций A и B действует коммутативный закон, поскольку все это несложно привести к эквивалентному условию AB = BA. Обратите внимание: в описанном нами физическом методе замки Алисы и Боба и правда позволяют перестановку. Их можно навешивать и снимать в любом порядке, результат будет тот же: ящичек с двумя замками.

Таким образом, Алиса и Боб могут играть в покер по переписке, если сумеют придумать два допускающих перестановку шифра A и B, таких, чтобы алгоритм расшифровки A –1 был известен только Алисе, а алгоритм B–1 – только Бобу.

Боб и Алиса выбирают большое простое число p, которое может быть опубликовано и известно всем. Они согласуют также 52 числа c1, …, c52 (mod p), которые будут представлять карты.

Алиса выбирает некоторое число a от 1 до p – 2 и определяет свою кодирующую функцию A как Ac = ca (mod p).

Пользуясь базовой теорией чисел, можно сказать, что обратная (декодирующая) функция имеет вид

A–1c = ca' (mod p)


для некоего числа a', которое она может вычислить. Алиса держит и a, и a' в секрете.

Аналогично Боб выбирает себе число b и определяет свою кодирующую функцию B как Bc = cb (mod p) и обратную к ней


B–1c = cb' (mod p)


для числа b', которое он может вычислить. Он держит b и b' в секрете.

Кодирующие функции A и B подчиняются коммуникативному закону, поскольку


ABc = A (cb) = (cb)a = cba = cab = (ca)b = B (ca) = BAc,


где все равенства выполняются (mod p). Поэтому Алиса и Боб могут использовать A и B описанным образом.

Исключение невозможного

Из мемуаров доктора Ватсапа

– Ватсап!

– А? Что? Вы это мне, Сомс?

– Сколько раз можно повторять, Ватсап, чтобы вы не приносили журнал The Strand в этот дом!

– Но… как…

– Вы знаете мои методы. Вы нетерпеливо постукивали пальцами, как делаете обычно, пока меня дожидаетесь. При этом вы то и дело поглядывали на свернутую газету, которая торчит у вас из кармана пальто. Газета эта слишком толста для Daily Reporter, хотя именно это название красуется у нее на первой полосе, так что в нее, наверное, завернут какой-то журнал. А поскольку вы по привычке прячете от меня лишь один журнал, сомневаться в его природе не приходится.

– Простите, Сомс, я просто надеялся получить кое-какие сравнительные данные о методах исследования из произведений коллеги… э-э… шарлатана из дома напротив.

– Тьфу! Этот человек – мошенник! Жулик, называющий себя детективом!

Откровенно говоря, временами Сомс бывает невыносим. Если подумать, он почти всегда такой.

– Бывали случаи, когда мне удавалось случайно выудить что-нибудь полезное из скучных творений моего нещадно эксплуатируемого коллеги, Сомс, – возразил я.

Перейти на страницу:

Похожие книги

Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг