Читаем Математические головоломки профессора Стюарта полностью

В 2011 г. Моник де Джагер и ее коллеги применили математику случайного блуждания к моделированию того, как могла сформироваться у мидий групповая стратегия. Случайное блуждание часто сравнивают с движением пьяного по дорожке: то вперед, то назад, без всякой очевидной системы. Если добавить еще одно измерение, получится, что случайное блуждание на плоскости – это серия шагов, длины и направления которых выбираются случайным образом. Разные правила выбора – разные распределения вероятностей для длин и направлений – дают случайные блуждания с разными свойствами. В броуновском движении длины шагов распределяются по колоколовидной кривой вблизи одного конкретного среднего значения шага. В блужданиях Леви[19] вероятность того или иного шага пропорциональна некоторой фиксированной степени его длины, в результате чего многочисленные короткие шаги время от времени прерываются гораздо более длинным шагом.

Статистический анализ наблюдаемых длин шагов ясно показывает, что блуждания Леви вполне соответствуют тому, чем на самом деле занимаются мидии на приливных отмелях, а броуновское движение – нет. Это согласуется и с экологическими моделями, которые математически демонстрируют, что блуждания Леви позволяют мидиям быстрее распространяться, осваивать больше новых площадей и избегать конкуренции с другими видами моллюсков. Это, в свою очередь, позволяет предположить, почему в процессе эволюции появилась именно такая стратегия. Естественный отбор обеспечивает обратную связь между стратегиями передвижения и генетическими инструкциями, предписывающими их применение. У каждой отдельной мидии появляется больше шансов выжить, если она пользуется стратегиями, которые повышают ее шансы на получение пищи и снижают вероятность того, что она будет смыта волнами.

Команда де Джагер использовала данные полевых наблюдений за поведением мидий и математические модели эволюционного процесса. Моделирование показало, что вероятность появления в ходе эволюции блужданий Леви при наличии такой обратной связи достаточно высока, но эволюционно стабильной – то есть не приводящей к катастрофе в случае вторжения какого-либо мутанта с другой стратегией – она становится тогда, когда показатель экспоненты достигает 2. Полевые наблюдения дают величину 2,06.

Устричные поля в этом контексте демонстрируют, что эффективность стратегии движения каждой отдельной мидии зависит от того, что делают все остальные мидии. Стратегия каждой отдельной мидии определяется ее генетикой, но ценность этой стратегии для выживания зависит от коллективного поведения всей местной популяции. Так что здесь мы видим, как окружающая среда – в форме остальных мидий – оказывает влияние на генетический «выбор» индивида и формирует паттерны поведения на уровне популяции.


Дополнительную информацию см. в главе «Загадки разгаданные».

Доказательство шарообразности Земли

Большинство из нас знает, что наша планета по форме круглая – но не точная сфера, а эллипсоид, слегка сплюснутый у полюсов. На ней достаточно неровностей, чтобы при увеличении отклонения от сферической формы примерно в 10 000 раз превратиться в картофелину. Некоторые – их очень немного – упрямцы продолжают настаивать, что Земля плоская, хотя еще древние греки 2500 лет назад собрали достаточно доказательств ее шарообразности, чтобы убедить даже средневековую церковь, а с тех пор доказательств стало намного больше. Вера в то, что Земля плоская, почти полностью ушла, но возродилась примерно в 1883 г. с основанием Зететического общества. Это общество, с 1956 г. известное как Общество плоской Земли, действует и поныне. Вы можете найти его в Интернете, можете следить за событиями в нем в «Фейсбуке» и «Твиттере».

Существует простой и совершенно неопровержимый способ самостоятельно убедиться в том, что наша планета не может быть плоской, если на ней действует обычная геометрия Евклида. Для этого вам потребуется Интернет или общение с терпеливым турагентом – и больше ничего, и речь не идет о том, чтобы посмотреть информацию о форме Земли в Википедии. Описываемая методика не показывает сама по себе, что Земля круглая, но в этом можно убедиться, если ей следовать систематически и аккуратно. Чуть позже мы поговорим о возможных способах отвергнуть полученное доказательство. Я не утверждаю, что таких способов нет: если вы адепт плоской Земли, то способ всегда найдется. Но в данном случае стандартные уловки выглядят еще менее убедительными, чем обычно. Во всяком случае, этот аргумент представляется свежим и необычным на фоне традиционных научных доказательств шарообразности Земли.

Перейти на страницу:

Похожие книги

Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг