Это более интересно, поскольку здесь мы сталкиваемся с той же проблемой, с какой столкнулись когда-то римляне, с той разницей, что они занялись ею намного раньше. Если вы попытаетесь записать гуголплекс в десятичном виде, как 1 000 000 000 …, то вам не хватит жизни, чтобы добраться до его конца. Строго говоря, вам не хватит для этого времени жизни всей Вселенной. Считая, что современные космологические представления верны, Вселенная, вероятно, закончит свое существование раньше, чем вы закончите писать это число. Во всяком случае, места для всех этих нулей вам не хватит даже в том случае, если каждый из них размером будет не больше кварка.
Однако существует и компактный способ записи гуголплекса: итерационная экспонента, или экспонента экспоненты. А именно:
1010¹⁰⁰
.И раз уж вы начали думать о подобных вещах, то добавим, что этот метод позволяет добраться до по-настоящему очень больших чисел. В 1976 г. ученый-компьютерщик Дональд Кнут придумал способ записи очень больших чисел, которые, помимо всего прочего, фигурируют в некоторых областях теоретической информатики. Когда я говорю «очень больших», я подразумеваю
Кнут начинает с записи
К примеру, 110↑2 = 100, 10↑3 = 1000, 10↑100 – гугол, а 10↑(10↑100) – гуголплекс. Традиционная договоренность о том, в каком порядке вычисляются экспоненты (справа налево), позволяет нам записать это проще – как 10↑10↑100. Не нужно обладать особенно развитым воображением, чтобы записать, скажем, 10↑10↑10↑10↑10↑10↑10.
Но это только начало. Пусть
К примеру,
2↑↑4 = 2↑(2↑(2↑2)) = 2↑(2↑4) = 2↑16 = 65 536
и
3↑3 = 3↑3↑3 = 3↑27 = 7 625 597 484 987.
Числа растут настолько стремительно, что записать их цифра за цифрой очень скоро становится попросту невозможно. К примеру, в числе 4↑↑4 насчитывается 155 десятичных знаков. Но в этом-то и
где
и т. д., где, как обычно,
Р. Гудштейн развил нотацию Кнута и упростил ее, введя выражения, названные им гипероператорами. Джон Конвей разработал собственную стрелочную нотацию с горизонтальными стрелочками и скобками.
В теории струн – области теоретической физики, целью которой является объединении теории гравитации с квантовой механикой, число 10↑10↑500 имеет вполне определенный смысл: это число потенциально различных структур пространства – времени. Согласно Дону Пейджу, самое длинное конечное время, в явном виде рассчитанное физиками, составляет всего лишь
10↑10↑10↑10↑10↑1,1 лет.
Это время возвращения Пуанкаре для квантового состояния черной дыры с массой, равной массе всей Вселенной, то есть время, через которое эта система вернется в свое первоначальное состояние и, по существу, история повторится.
Число Грэма
Иногда математикам требуются более крупные числа, чем физикам. Не только, надо заметить, для развлечения: дело в том, что такие числа на самом деле иногда всплывают в разумных актуальных задачах. Число Грэма, названное в честь американца Рона Грэма, возникает в комбинаторике – математике подсчета различных способов перестановки объектов или выполнения каких-то условий.
В 1978 г. Грэм и Брюс Ротшильд работали над задачей о гиперкубах – многомерных аналогах куба. У квадрата 4 угла, у куба – 8, у четырехмерного гиперкуба – 16, а у
Возьмем
Два упомянутых математика доказали, что такое число