Читаем Математические головоломки полностью

так как 210 ≈ 1000.

Значит, сороковое поколение должно претерпеть еще 90 делений, чтобы вырасти до объема Солнца. Общее число поколений, считая от первого, равно 40 + 90 = 130. Легко сосчитать, что это произойдет на 147-е сутки.

Заметим, что фактически одним микробиологом (Метальниковым) наблюдалось 8061 деление парамеции. Предоставляю читателю самому рассчитать, какой колоссальный объем заняло бы последнее поколение, если бы ни одна инфузория из этого количества не погибла…

Вопрос, рассмотренный в этой задаче, можно предложить, так сказать, в обратном виде.

Вообразим, что наше Солнце разделилось пополам, половина также разделилась пополам и т. д. Сколько понадобится таких делений, чтобы получились частицы величиной с инфузорию?

Хотя ответ уже известен читателям – 130, он все же поражает своею несоразмерной скромностью.

Мне предложили ту же задачу в такой форме.

Листок бумаги разрывают пополам, одну из полученных половин снова делят пополам и т. д. Сколько понадобится делений, чтобы получить частицы атомных размеров?

Допустим, что бумажный лист весит 1 г, и примем для веса атома величину порядка  г. Так как в последнем выражении можно заменить 1024 приближенно равным ему выражением 280, то ясно, что делений пополам потребуется всего 80, а вовсе не миллионы, как приходится иногда слышать в ответ на вопрос этой задачи.

В миллионы раз быстрее

Электрический прибор, называемый триггером, содержит две электронные лампы[22] (т. е. примерно такие лампы, которые применяются в радиоприемниках). Ток в триггере может идти только через одну лампу: либо через «левую», либо через «правую». Триггер имеет два контакта, к которым может быть извне подведен кратковременный электрический сигнал (импульс), и два контакта, через которые с триггера поступает ответный импульс. В момент прихода извне электрического импульса триггер переключается: лампа, через которую шел ток, выключается, а ток начинает идти уже через другую лампу. Ответный импульс подается триггером в тот момент, когда выключается правая лампа и включается левая.

Проследим, как будет работать триггер, если к нему подвести один за другим несколько электрических импульсов. Будем характеризовать состояние триггера по его правой лампе: если ток через правую лампу не идет, то скажем, что триггер находится в «положении 0», а если ток через правую лампу идет, – то в «положении 1».

Рис. 27

Пусть первоначально триггер находился в положении 0, т. е. ток шел через левую лампу (рис. 27). После первого импульса ток будет идти через правую лампу, т. е. триггер переключится в положение 1. При этом ответного импульса с триггера не поступит, так как ответный сигнал подается в момент выключения правой (а не левой) лампы.

После второго импульса ток будет идти уже через левую лампу, т. е. триггер снова попадет в положение 0. Однако при этом триггер подаст ответный сигнал (импульс).

В результате (после двух импульсов) триггер снова придет к начальному состоянию. Поэтому после третьего импульса триггер (как и после первого) попадет в положение 1, а после четвертого (как и после второго) – в положение 0 с одновременной подачей ответного сигнала и т. д. После каждых двух импульсов состояния триггера повторяются.

Представим себе теперь, что имеются несколько триггеров и что импульсы извне подводятся к первому триггеру, ответные импульсы первого триггера подводятся ко второму, ответные импульсы второго – к третьему и т. д. (на рис. 28 триггеры расположены один за другим справа налево). Проследим, как будет работать такая цепочка триггеров.

Рис. 28

Пусть сначала все триггеры находились в положениях 0. Например, для цепочки, состоящей из пяти триггеров, мы имели комбинацию 00000. После первого импульса первый триггер (самый правый) попадет в положение 1, а так как ответного импульса при этом не будет, то все остальные триггеры останутся в положениях 0, т. е. цепочка будет характеризоваться комбинацией 00001. После второго импульса первый триггер выключится (попадает в положение 0), но подаст при этом ответный импульс, благодаря чему включится второй триггер. Остальные триггеры останутся в положениях 0, т. е. получится комбинация 00010. После третьего импульса включится первый триггер, а остальные не изменят своих положений. Мы будем иметь комбинацию 00011. После четвертого импульса выключится первый триггер, подав ответный сигнал; от этого ответного импульса выключится второй триггер и также даст ответный импульс; наконец, от этого последнего импульса включится третий триггер. В результате мы получим комбинацию 00100.

Аналогичные рассуждения можно продолжать и далее. Посмотрим, что при этом получается:

Мы видим, что цепочка триггеров «считает» поданные извне сигналы и своеобразным способом «записывает» число этих сигналов. Нетрудно видеть, что «запись» числа поданных импульсов происходит не в привычной для нас десятичной системе, а в двоичной системе счисления.

Перейти на страницу:

Все книги серии Простая наука для детей

Похожие книги