Это означает лишь, что двузначного числа, удовлетворяющего поставленным условиям, не существует и что составленные уравнения противоречат одно другому.
В самом деле: умножив обе части первого уравнения на 9, мы найдем из него:
9
а из второго (после раскрытия скобок и приведения подобных членов):
9
Одна и та же величина 9у – 9х согласно первому уравнению равна 36, а согласно второму 27. Это безусловно невозможно, так как 36 ≠ 27.
Подобное же недоразумение ожидает решающего следующую систему уравнений:
Разделив первое уравнение на второе, получаем:
а сопоставляя полученное уравнение со вторым, видим, что
т. е. 4 = 2. Чисел, удовлетворяющих этой системе, не существует. (Системы уравнений, которые, подобно сейчас рассмотренным, не имеют решений, называются несовместными.)
II. С иного рода неожиданностью встретимся мы, если несколько изменим условие предыдущей задачи. Именно будем считать, что цифра десятков не на 4, а на 3 меньше, чем цифра единиц, а в остальном оставим условие задачи тем же. Что это за число?
Составляем уравнение. Если цифру десятков обозначим через х, то число единиц выразится через
Сделав упрощения, приходим к равенству 27 = 27.
Это равенство неоспоримо верно, но оно ничего не говорит нам о значении
Напротив, это означает, что составленное нами уравнение есть тождество, т. е. что оно верно при любом значении неизвестного
14 + 27 = 41,
47 + 27 = 74,
25 + 27 = 52,
58 + 27 = 85,
36 + 27 = 63,
69 + 27 = 96.
III. Найти трехзначное число, обладающее следующими свойствами:
1) цифра десятков 7;
2) цифра сотен на 4 меньше цифры единиц;
3) если цифры этого числа разместить в обратном порядке, то новое число будет на 396 больше искомого.
Составим уравнение, обозначив цифру единиц через
100
Уравнение это после упрощений приводит к равенству
396 = 396.
Читатели уже знают, как надо толковать подобный результат. Он означает, что каждое трехзначное число, в котором первая цифра на 4 меньше третьей[2], увеличивается на 396, если цифры поставить в обратном порядке.
До сих пор мы рассматривали задачи, имеющие более или менее искусственный, книжный характер; их назначение – помочь приобрести навык в составлении и решении уравнений. Теперь, вооруженные теоретически, займемся несколькими примерами задач практических – из области производства, обихода, военного дела, спорта.
В парикмахерской
ЗАДАЧА
Может ли алгебра понадобиться в парикмахерской? Оказывается, что такие случаи бывают. Мне пришлось убедиться в этом, когда однажды в парикмахерской подошел ко мне мастер с неожиданной просьбой:
– Не поможете ли нам разрешить задачу, с которой мы никак не справимся?
– Уж сколько раствора испортили из-за этого! – добавил другой.
– В чем задача? – осведомился я.
– У нас имеется два раствора перекиси водорода: 30-процентный и 3-процентный. Нужно их смешать так, чтобы составился 12-процентный раствор. Не можем подыскать правильной пропорции…
Мне дали бумажку, и требуемая пропорция была найдена.
Она оказалась очень простой. Какой именно?
РЕШЕНИЕ
Задачу можно решить и арифметически, но язык алгебры приводит здесь к цели проще и быстрее. Пусть для составления 12-процентной смеси требуется взять х граммов 3-процентного раствора и у граммов 30-процентного. Тогда в первой порции содержится 0,03
0,03
В результате получается (х + у) граммов раствора, в котором чистой перекиси должно быть 0,12 (
0,03
Из этого уравнения находим х = 2
Трамвай и пешеход
ЗАДАЧА
Идя вдоль трамвайного пути, я заметил, что каждые 12 минут меня нагоняет трамвай, а каждые 4 минуты я сам встречаю трамвай. И я и трамваи движемся равномерно.
Через сколько минут один после другого покидают трамвайные вагоны свои конечные пункты?
РЕШЕНИЕ
Если вагоны покидают свои конечные пункты каждые х минут, то это означает, что в то место, где я встретился с одним из трамваев, через х минут приходит следующий трамвай. Если он догоняет меня, то в оставшиеся 12 –
Если же трамвай идет мне навстречу, то он встретит меня через 4 минуты после предыдущего, а в оставшиеся (