Читаем Математические модели в естественнонаучном образовании полностью

Модель  иногда называют дискретной логистической моделью или моделью Рикера. Такая модель роста популяции, названная в честь её первооткрывателя Билла Рикера, была предложена в далёком 1954 году. Легко вычислить точки равновесия модели, ими являются  и . Можно дополнительно проанализировать эту модель, нарисовав паутинную диаграмму и вычислив стабильность равновесий, как делалось неоднократно в предыдущих разделах.

Можно возразить против подхода к моделированию в формате «кролик из шляпы»; без объяснений, откуда взялось уравнение модели Рикера. Но ниже будет дано одно пояснение, важно понимать, что действительно важно, так это то, какие качественные изменения демонстрирует функция на графике, насколько реалистично такое поведение. Если странная формула дает нужный график, то этого уже достаточно для оправдания ей использования.

Для более полного обоснования адекватности модели Рикера вернемся к графику функции изменения численности населения на душу населения  как функции от , что в свою очередь стимулировало развитие логистической модели. Единственная причина выбора формулы



 заключалась в моделировании нисходящей тенденции, показанной на рисунке 1.1.

Как улучшить такую модель? Во-первых, изменение численности населения на душу населения не может быть меньше -1, потому что это будет означать более одной смерти на душу населения, но «Расстреливать два раза уставы не велят». Это означает, что график должен больше походить на рисунок 1.11.



Рисунок 1.11. Темпы роста на душу населения для новой модели.

Поскольку график выглядит как экспоненциально убывающая кривая, перемещенная вниз на одну единицу, это приводит к следующей формуле: , при некоторых положительных значениях  и . Чтобы получить классическую формулу из модели Рикера, выполним замену переменных. Пусть  и , тогда с новыми параметрами  и  модель принимает вид . Теперь элементарными преобразованиями можно прийти к формуле Рикера: . В этой формуле  как и прежде следует интерпретировать как пропускную способность или грузоподъёмность логистической модели, потому что если , то ; а если , то . Конечная внутренняя скорость роста, однако, равна , а не просто , хотя для достаточно малого  эти величины примерно одинаковы.

Конечно, кривая  не обязана быть экспоненциально убывающей.  Чтобы точнее смоделировать динамику популяции, нужно собрать данные о том, как численность популяции в момент времени  зависит от численности популяции в момент времени . Тогда можно будет построить точки  и найти формальное выражение функции, график которой через них проходит. Поскольку модель Рикера имеет два параметра,  и , то изменяя каждый из них можно сделать так, чтобы теоретическая кривая достаточно хорошо покрывалась эмпирическими данными.

Другая часто используемая модель имеет вид  . Физическое значение чисел ,  и  в этой модели неочевидно, просто уравнения с тремя параметрами позволяют иметь больше свободы в выборе формы кривой и лучше соответствовать эмпирическим данным.

Представленные на рисунке 1.12 графики демонстрируют функциональную зависимость модели   при двух различных вариантах значений параметров. Эти два графика описывают совершенно разную динамику населения. График слева, который асимптотически стремится к горизонтальной оси, представляет собой чистую конкуренцию за ресурсы между людьми, где каждый человек просто получает меньше ресурсов, если популяция очень велика. Таким образом, в рамках данной модели члены популяции страдают от наличия большой популяции вокруг. Следовательно, большое значение , вероятно, приведет к гораздо меньшему значению для  и чем больше , тем меньше будет .



Рисунок 1.12. Две модели  с разными значениями параметров.

График справа, который асимптотически стремится к прямой параллельной горизонтальной оси, представляет собой своеобразное соревнование, по условиям которого если численность популяция превышает свою пропускную способность, то некоторые особи получают все ресурсы, а другие не получают ничего. Поэтому любое большое значение  может привести примерно к тому же значению . Конечно, многие популяции демонстрируют поведение, сочетающее аспекты этих двух крайних типов конкуренции, а поэтому описываются графиками промежуточного варианта.

Задачи для самостоятельного решения:

1.4.1. Для дискретной популяционной модели относительный темп роста определяется как .

а. Заполните пропущенные места: начиная с некоторого значения , если относительный темп роста окажется больше 1, то популяция будет _________ в течение следующего временного интервала, тогда как если он будет меньше 1, то популяция _________.

б. Какой смысл имеет относительный темп роста равный нулю? А отрицательный?

в. Приведите выражения для вычисления относительного темпа роста для геометрических и логистических моделей населения, а также других моделей пройденного раздела.

г. Постройте график каждой из относительных скоростей роста, которые выведите в части (в) как функции от . Возможно, придется задать несколько конкретных значений параметров, чтобы нарисовать графики.

Перейти на страницу:

Похожие книги

Павел I
Павел I

Император Павел I — фигура трагическая и оклеветанная; недаром его называли Русским Гамлетом. Этот Самодержец давно должен занять достойное место на страницах истории Отечества, где его имя все еще затушевано различными бездоказательными тенденциозными измышлениями. Исторический портрет Павла I необходимо воссоздать в первозданной подлинности, без всякого идеологического налета. Его правление, бурное и яркое, являлось важной вехой истории России, и трудно усомниться в том, что если бы не трагические события 11–12 марта 1801 года, то история нашей страны развивалась бы во многом совершенно иначе.

Александр Николаевич Боханов , Алексей Михайлович Песков , Алексей Песков , Всеволод Владимирович Крестовский , Евгений Петрович Карнович , Казимир Феликсович Валишевский

Биографии и Мемуары / История / Проза / Историческая проза / Учебная и научная литература / Образование и наука / Документальное
История алхимии. Путешествие философского камня из бронзового века в атомный
История алхимии. Путешествие философского камня из бронзового века в атомный

Обычно алхимия ассоциируется с изображениями колб, печей, лабораторий или корня мандрагоры. Но вселенная златодельческой иконографии гораздо шире: она богата символами и аллегориями, связанными с обычаями и религиями разных культур. Для того, чтобы увидеть в загадочных миниатюрах настоящий мир прошлого, мы совершим увлекательное путешествие по Древнему Китаю, таинственной Индии, отправимся в страну фараонов, к греческим мудрецам, арабским халифам и европейским еретикам, а также не обойдем вниманием современность. Из этой книги вы узнаете, как йога связана с великим деланием, зачем арабы ели мумии, почему алхимией интересовались Шекспир, Ньютон или Гёте и для чего в СССР добывали философский камень. Расшифровывая мистические изображения, символизирующие обретение алхимиками сверхспособностей, мы откроем для себя новое измерение мировой истории. Сергей Зотов — культурный антрополог, младший научный сотрудник библиотеки герцога Августа (Вольфенбюттель, Германия), аспирант Уорикского университета (Великобритания), лауреат премии «Просветитель» за бестселлер «Страдающее Средневековье. Парадоксы христианской иконографии». 

Сергей О. Зотов , Сергей Олегович Зотов

Религиоведение / Учебная и научная литература / Образование и наука
Россия во французской прессе периода Революции и Наполеоновских войн (1789–1814)
Россия во французской прессе периода Революции и Наполеоновских войн (1789–1814)

Предлагаемая монография стала результатом многолетней работы авторов над темой изображения России во французской прессе в период Революции и Наполеоновских войн. Двадцатипятилетие 1789-1814 гг. характеризовалось непростыми взаимоотношениями России и Франции, то воевавших друг с другом, то бывших союзниками. Авторы анализируют механизмы функционирования прессы и управления ею со стороны государства, а также то, как публикации в центральных и региональных газетах меняли общественное мнение о Российской империи и об отдельных аспектах ее жизни. Кроме материалов прессы, авторы активно привлекают архивные источники и опубликованные письменные свидетельства эпохи.В формате PDF A4 сохранен издательский макет.

Андрей Александрович Митрофанов , Евгения Александровна Прусская , Николай Владимирович Промыслов

История / Учебная и научная литература / Образование и наука