Теперь перейдем к конфетам. Исследователи обнаружили, что частицы, которые выглядят как M&M’s – приплюснутые шары или сфероиды, – заполняют сосуд так же, как и шары. Если их сложить как апельсины, то они тоже заполняют примерно 74 % объема. Но если их насыпать в сосуд беспорядочно, то они выигрывают у шаров и заполняют 71 % пространства, а это намного больше, чем у шаров. Некоторые люди считают, что сфероиды эффективнее заполняют пространство, нежели шары, так как они могут переворачиваться, пока не попадут в конфигурацию, которая использует больше пространства. Другие фигуры показывают еще лучший результат. Беспорядочно насыпанные эллипсоиды – похожи на мячи для американского футбола или на миндаль в шоколаде, если вам так больше нравится, – могут заполнить до 74 % объема.
Кеплеру так и не удалось доказать свою гипотезу, однако Гаусс смог предоставить неполное доказательство в 1800-х. Последний шаг в доказательстве был сделан в 1990-х, когда математик Томас Хейлс использовал компьютерную программу, которая и помогла доказать гипотезу. Но доказательство оказалось таким длинным – несколько сотен страниц, – что он воспользовался компьютерным алгоритмом, чтобы проверить его!
В 1995 году ярые любители сладости проголосовали за добавление нового цвета в упаковку M&M’s. Выиграл синий цвет, который набрал 54 % голосов. (Всего было отдано 10 миллионов голосов.) Среди финалистов также были розовый и лиловый цвета.
1.30. Танграмы
Математические понятия: фигуры, геометрия
Если вы любите игры, то можете увлекаться танграмами, головоломкой из Китая. Некоторые люди считают, что она возникла тысячи лет назад, хотя первое опубликованное доказательство появилось в 1813 году. Классический набор танграм состоит из семи фигур: двух больших треугольников, среднего треугольника, двух маленьких треугольников, одного квадрата и одного параллелограмма (прямоугольника, у которого две короткие стороны наклонены в одну сторону). Все треугольники являются прямоугольными, то есть один угол в каждом треугольнике равен 90 градусам. Фигуры могут быть сделаны практически из любого материала, включая дерево, пластик, стекло или панцирь черепахи. На самом деле, вы сами можете сделать свой набор танграм с помощью бумаги, карандаша, линейки и ножниц.
Целью игры является сложить семь деталей, чтобы получить сложную фигуру, такую, как человек или животное. (Набор танграм обычно содержит книгу с возможными фигурами.) Детали не должны перекрывать друг друга, и край одной детали должен касаться края как минимум одной другой детали.
Связь между таграмами и математикой очевидна: фигуры пришли из геометрии, раздела математики, который изучает линии, точки и углы. Но танграмы наводят и на более глубокие математические размышления. Некоторые математики задавались вопросом, сколько фигур можно сложить из семи деталей набора танграм. Но в голове у них были вовсе не фигуры овец или моряков. Вместо этого они думали о выпуклых многоугольниках, таких фигурах, как пятиугольники и квадраты, у которых есть три или более сторон и ни одна сторона не наклоняется в сторону центра. Математики обнаружили, что игрок может создать из семи деталей 13 выпуклых многоугольников: два пятиугольника, шесть четырехугольников, один треугольник и четыре шестиугольника. Головоломка простая, но, как и многое в математике, имеет глубокий аспект, который не сразу виден.
Не все наборы танграм состоят из треугольников и прямоугольников. Один вид – яйцо Колумба – сначала предстает двухмерной фигурой. Потом его делят на детали, у некоторых из них изогнутые края.
1.31. Бархатные канаты как математическая категория
Математическое понятие: цепная линия
Если вы поедете в Сент-Луис в Миссури, вы не сможете не увидеть «Ворота Запада», это громадная постройка из стали и бетона, которая достигает в высоту 630 футов. Достроенная в 1965 году арка символизирует историческую роль Сент-Луиса в качестве ворот на запад для тех, кто колонизировал Северную Америку. Арку можно также рассматривать как дань уважения математике, так как ее форма напоминает цепную линию, своего рода арку, которая образовывается, когда цепь прикрепляют к двум стойкам с обеих сторон, и при этом она ниспадает к земле. (Если быть более точным, то «Ворота Запада» – это перевернутая версия почти цепной линии.) Цепные линии вы можете увидеть в линиях электропередачи между вышками и в форме тяжелого троса, который держит корабль в порту. Вы также можете их увидеть в виде бархатных канатов, которые ограждают людей, стоящих в очереди в кино или на концерт.
Цепные линии похожи на параболы – другой вид кривых, – но уравнение для них было получено лишь в 1691 году тремя математическими титанами: Христианом Гюйгенсом, Якобом Бернулли и Готфридом Лейбницем.