2.5. Самая эффективная очередь в кассу
Математическое понятие: теория очередей
Покупки в магазине могут быть полны всякого рода раздражений. Чья-то тележка может загораживать прилавок. Ваши любимые хлопья могли закончиться. И где найти хумус?
Но самым худшим раздражением, которое может закрасться вам в самую душу и начать отравлять весь ваш организм, является ожидание в очереди на кассу. И вот вы стоите с тележкой, полной колбасы, макарон и яблок, и перед вами выбор самой быстрой, по вашему мнению, кассы. Но как только вы делаете выбор, очередь, как вам кажется, перестает двигаться благодаря одному покупателю, который ищет мелочь. Теперь все другие очереди движутся быстрее вашей. И почему вам всегда кажется, что очередь, которую выбрали вы, никогда не является самой быстрой?
Есть раздел математики, который как раз занимается этим вопросом. Он называется теорией очередей и берет свое начало в Копенгагене в первой декаде XX века. Инженер и математик Агнер Краруп Эрланг пытался выяснить минимальное количество телефонных линий, необходимых в городе, чтобы проходило большинство звонков. (В этот исторический период соединение осуществлялось людьми, которые вставляли разъем в отверстие для каждого звонка.) Телефонные компании хотели избежать приобретения слишком маленького количества телефонных линий, что могло вызвать задержки, если много человек совершали звонки в одно время, или слишком большого количества телефонных линий, что значило бы, что компания заплатила за оборудование, которое ей не нужно.
Имя Эрланга навсегда связано с телефонией: эрланг – это единица телефонной нагрузки или телекоммуникационного трафика, используемая для определения объема трафика. Его открытия применяются и за пределами телефонных сетей, включая дорожное дело, Интернет и строительство фабрик.
Но вы, скорее всего, сталкивались с теорией очередей во время выполнения своих дел. Математики обнаружили, что если посетители формируют извилистую очередь в форме «змейки» и их посылают на следующую освободившуюся кассу, то время ожидания может быть радикальным образом сокращено. (Такой вид очереди можно встретить в некоторых банках, когда люди ждут своей очереди к кассиру, или в некоторых магазинах.) В отличие от традиционной очереди, в которой один медлительный человек или кассир может задержать всю очередь, очередь в форме «змейки» обеспечивает минимальное время ожидания, так как медлительный человек все еще может тянуть время на кассе, но в это время другие посетители могут проходить на другие кассы. Задержки неизбежны, но в целом последствия будут не такими плохими.
Когда перед человеком встает выбор – очередь справа или очередь слева, – некоторые считают, что левый маршрут будет быстрее. Это потому, что у 90 % населения основная рука – правая, поэтому они инстинктивно идут направо. Это могут быть выдумки, но если вы стоите в очереди в парке развлечений, то стоит попробовать пойти в левую очередь.
2.6. Как подготовиться к тесту Тьюринга
Математическое понятие: тест Тьюринга
Если вы видели фильм 1982 года «Бегущий по лезвию», вы помните эту сцену, где мужчина сидит за столом и сквозь облако сигаретного дыма пытается понять, кто сидит за другим концом стола: мужчина или робот. Кажется, эту идею – тест на наличие сознания – можно найти лишь в научной фантастике XX века, но, по правде говоря, она существует вот уже сотни лет. Рене Декарт упоминает ее в своей книге «Рассуждение о методе» (1637), где он утверждает, что если перед вами машина, которая выглядит и ведет себя как человек, вы все равно сможете отличить, что он ненастоящий.
1. Во-первых, машина не сможет убедительно говорить во многих ситуациях, то есть, другими словами, она никогда не сможет выйти за рамки запрограммированной речи.
2. Во-вторых, она никогда не сможет вести себя универсальным способом. (Декарт имеет в виду, что машины обычно специализируются на одной задаче, например сварке или печати. А так как они создаются для ограниченного числа целей, у них нет способности взаимодействовать с миром творчески и спонтанно.)
Однако самый подробный пример процедуры, которая могла отличить машину от живого существа, обладающего разумом, был представлен в 1950 году в работе Алана Тьюринга, британского математика и криптографа, который во время Второй мировой войны взломал код немецкой шифровальной машины «Энигма». Его работа «Вычислительные машины и разум» содержала тест, который помог бы ответить на вопрос: «Может ли машина обладать разумом?»