Пройдите в самую большую комнату своего жилища. А теперь вообразите, что вся ширина этой комнаты представляет собой миллиард. Какую часть ширины в таком случае занимает миллион? Поскольку миллион – число большое, естественно подумать, что точка, соответствующая этому числу, окажется на достаточном, заметном расстоянии от стены. В действительности же, если ваша комната, скажем, имеет ширину пять метров, то «миллионная» отметка будет располагаться всего лишь в пяти миллиметрах от стенки. В сравнении с миллиардом миллион – крохотная величина. «Миллионы», «миллиарды», «триллионы» наполняют наши газеты. Все названия звучат солидно, на самом же деле очень полезно сформировать у ребенка представление о том, что между большим, очень большим и огромными числами – дистанция огромного размера.
…и так далее.
В конце концов мы добираемся до «бесконечности» и успокаиваемся до тех пор, пока кто-нибудь не скажет: «Бесконечность плюс один». Но что такое бесконечность плюс один? (Если захотите узнать об этом, см. «Бесконечность и дальше» в главе «Большие идеи для маленьких человечков».)
Десятичная запятая
Мы уже видели, как наша система счета работает с группировкой чисел по десяткам, когда каждый разряд в числе в десять раз больше, чем его сосед справа (сто в десять раз больше десяти, тысяча в десять раз больше ста и т. д.). Эта же модель работает и в обратном направлении. Читая слева направо, увидим, что каждый следующий столбец в десять раз меньше предыдущего (сто в десять раз меньше тысячи, единица в десять раз меньше десятка). Но зачем останавливаться на этом?
Мы можем поделить единицы на кусочки, которые будут в десять раз меньше: десятые доли. А эти десятые доли поделить на кусочки, которые вновь будут в десять раз меньше: сотые доли. Мы называем все эти доли десятичной дробной частью, или десятичными знаками
. В английском языке они обозначаются словомКогда математики придумали принцип образования десятичных дробей, встал вопрос: как записывать эти новые числа? Можно было бы, конечно, писать просто
Десятичные знаки в дробной части тоже могут продолжаться сколь угодно долго:
Так что числа могут не только увеличиваться, но и уменьшаться до бесконечности.