Перед отрицательными числами обязательно нужно ставить знак «–». Перед положительными числами тоже положено ставить знак «+», но делать мы это будем не всегда.
Уравнение можно представить себе в виде доски-качалки, где знак «равно» – точка опоры. Положительные числа – это грузы, прижимающие доску к земле, а отрицательные – воздушные шары, тянущие ее вверх.
Если хотите переместить числа с места на место на одном конце доски, их знаки нужно перемещать вместе с ними. Поменяв местами числа с левой стороны, получим:
Знак «минус» должен оставаться перед числом 2, иначе уравнение станет неверным. Перед 7 появился знак «плюс» как напоминание, что оно положительное. Предположим, что нам нужно оставить в левой части уравнения только число +7. Существует всего одно золотое правило.
Чтобы в левой части осталось только +7, нужно избавиться от –2. Для этого добавим +2; однако, согласно правилу, это число нужно добавить к обеим частям уравнения.
−2 и +2 с левой стороны уравнения взаимоуничтожатся, то есть дадут 0. С правой же стороны +2 останется, и мы получим:
Выполнив подсчеты, вы убедитесь, что 7 и вправду равняется 4 + 1 + 2. При этом мы продемонстрировали маленькую хитрость.
Вот еще одна вещь, которую можно показать на примере доски-качалки: вы можете менять две части уравнения местами:
Скобки
Давайте пока остановимся на варианте 7 = 4 + 1 + 2. Предположим, что нам нужно знать, чему равно число 14. Для этого умножаем 7 на 2, но умножать также следует и другую часть уравнения. Поскольку с правой стороны стоят три числа, каждое из них необходимо умножить на 2 вот так:
Как видите, мы заключили все числа с правой стороны в скобки. Можно было записать это иначе: 2 × 4 + 2 × 1 + 2 × 2, но со скобками получается короче и удобнее. Число 2 перед скобкой называется
Добавляем буквы
Наверное, вам уже не терпится перейти к решению хитроумных дифференциальных уравнений, однако начнем с малого.
Прогуливаясь по улице, вы неожиданно встречаете Малькольма, который пребывает в легком шоке. Он только что водил маму в кофейню Barstucks, где они выпили по чашке кофе, и в результате из 10 фунтов, которые он брал с собой, осталось всего 1,20 фунта. Сколько же стоила каждая чашка? Вот что нам известно:
Мы сэкономим массу типографской краски, если обозначим цену одной чашки кофе буквой
Что ж, давайте составим уравнение и посмотрим, как быть дальше.
Нам нужно, чтобы слева от знака равенства была только буква
Минус перед 2
Теперь подсчитаем 10 − 1,20 = 8,80, тогда
Поскольку нам нужна только одна
4,40 фунта за чашку кофе? Неудивительно, что Малькольм был в шоке!
Что можно и чего нельзя
В алгебре есть еще несколько на первый взгляд странных правил, поэтому, чтобы они стали понятнее, представим себе множество одинаковых коробков спичек. В каждом содержится
Теперь, разобравшись с коробками, перейдем к правилам и выясним, как их применять к нашим спичкам.
Если добавить еще одну стопку из трех коробков…
… то 2 стопки по 3
Если вы где-то нашли три спички…
Видите, теперь у нас 6