Читаем Математика, Философия и Йога полностью

Вот оно, противоречие! Земля улетает прочь по касательной, и потому результирующее движение определяется параллелограммом сил Земля удаляется в сторону перпендикулярно направлению к Солнцу и в то же время с определенной силой притягивается к нему. Нарисуем возникающий параллелограмм, и подлинный путь Земли будет описываться этой диагональю, слиянием двух сил, учитывая, что каждый отрезок пропорционален соответствующей силе. Используйте для расчетов очень маленькие по размерам параллелограммы, и получится истинная кривая. Это объединение двух по видимости противоположных принципов, и оно возникает в обычной науке очень часто. Я предлагаю вам сделать то же самое с более сложным для понимания вопросом. Предположим, один философ направляется к внешнему смыслу чувственного восприятия или внешнему содержанию умозрительного постижения. Он движется к майе, иллюзии, и в этом смысле Шанкара прав: возникающие перед мысленным или обычным взором человека образы не приносят Реального и не ведут к нему. По этой причине йога предлагает уничтожить их! Разрушьте майю, и тогда проявится Реальное. В этом утверждении не говорится, что явственное никак не связано с Реальным. Обратите внимание на эту тонкость. Майявида в чистой форме утверждала бы, что майя не имеет никакой связи с Реальным, это только та преграда, которую следует разрушить. Однако мы говорим, что между ними сохраняется отношение обратной пропорциональности, и этот принцип чрезвычайно важен для любого йогического развития – обращения, или переворота, сознания. Явственное обратно пропорционально Реальному. Эту фразу, как и любое другое утверждение, в которое входит знак равенства, можно развернуть. При такой взаимосвязи Реального возможно достичь посредством явственного, достаточно только применить принцип обращения. Если этого принципа нет, остается чистая майя. Понимаете мою мысль? Какая-то ее доля остается, но не очень много.

Теперь я прошу вас дать волю своему воображению. Представьте себе бесконечное пространство, совершенно темное; отождествитесь с этим пространством и вообразите, что это полнота, заполненность, а не пустота. Все представляет собой совершенное равновесие, уравновешенность, нет ничего недостающего и никакой напряженности. Едва действующее сознание стремится к своему рождению, и любой процесс начинается с образования областей, в которых наборы различных аспектов нейтрализуются своими противоположностями, порождая тем самым пустоты, частичные полости в этой полноте. Так перед нами возникают звезды, миры и все прочие явления. Эти пустоты представляют собой, так сказать, сферы напряженности в полноте, они подталкивают дремлющее семя сознания к определенному суженному содержанию. Сознание приходит в движение из-за боли, вызываемой этими пустотами, из-за опустошенности-во внешнем времени этот процесс занимает годы, а в субъективном, скорее всего, происходит мгновенно. Постепенно развивается способность сознавать – сначала явственные объекты в сознании, а затем, очень медленно, и само Сознание, Сознание-без-Объекта. Когда сознание достигает того уровня, где осознает само Сознание, темное пространство постигается как Свет – то, чем оно, вообще говоря, было всегда. Таким образом, есть полное отсутствие сознания, олицетворяемое черным, непроницаемым пространством, и Полное Сознание, символом которого служит светлое пространство, но оба представляют собой одно и то же, за тем исключением, что в одном случае есть сознание, уже осознающее само себя. Оно появляется на свет в родовых муках, вызванных пустотами среди Полноты. Восторг Полноты возникает после того, как не остается никаких пустот. Сейчас я описываю процесс развития не как сложение, умножение и увеличение, а как процесс вычитания, деления и уменьшения – сужения с целью осознания Сознания, вопроса невероятно, поразительно тонкого. Область совершенного, summum bonum*, становится следствием развития до уровня целостной, неуменьшенной Полноты.


ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ

Рис. 23

Прежде чем мы перейдем к мандале, я хотел бы ввести новую тему, поскольку есть еще один вопрос, который окажется для нас важным. Нам опять предстоит заняться математикой и ознакомиться с очередной игрушкой. Есть несколько тригонометрических функций (см. рис. 23) – синус, косинус, тангенс, котангенс и так далее, – но мы поговорим только об одной из них: о синусе. Мы произносим это название как «синус», но обычно эту функцию записывают в сокращенной форме: sin. Синус угла равен а/с, косинус – b/с, тангенс – а/b, а котангенс – b/а, но мы не будем рассматривать остальные функции. Я хочу построить одну кривую. Давайте начертим такую окружность (см. рис. 24):


ПОСТРОЕНИЕ СИНУСОИДЫ

Рис. 24

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже