Люки Кирквуда не видны на предыдущем рисунке по двум причинам. Во-первых, точки, изображающие астероиды, намного больше реального размера астероидов в масштабе рисунка, а во-вторых, «щели» наблюдаются на расстояниях, а не в конкретных местах. Каждый астероид движется по эллиптической орбите, и расстояние от него до Солнца постоянно меняется. Так что астероиды
Кирквуд правильно предположил, что замеченные им щели созданы мощным гравитационным полем Юпитера. Оно оказывает влияние на каждый астероид пояса, но между резонансными и нерезонансными орбитами существует значительная разница. Очень глубокий провал слева на графике соответствует орбитальному расстоянию, на котором астероид находится с Юпитером в резонансе 3:1, то есть совершает три оборота вокруг Солнца на один оборот Юпитера. Периодическое повторение одних и тех же взаимных позиций усиливает долговременные эффекты тяготения Юпитера.
В данном случае резонансы расчищают соответствующие области пояса. Орбиты астероидов, находящихся в резонансе с Юпитером, становятся более вытянутыми и хаотичными до такой степени, что начинают пересекать орбиты внутренних планет, в первую очередь Марса. Происходящие иногда сближения с Марсом еще сильнее изменяют их орбиты, выбрасывая такие астероиды в случайных направлениях. По мере того как этот эффект заставляет уходить все больше астероидов из зоны возле резонансной орбиты, там и возникает люк.
Основные люки (в скобках указаны соответствующие резонансы) располагаются на расстояниях 2,06 а.е. (4:1); 2,50 а.е. (3:1); 2,82 а.е. (5:2); 2,95 а.е. (7:3) и 3,27 а.е. (2:1). Существуют более слабые, или узкие, щели на расстояниях 1,90 а.е. (9:2); 2,25 а.е. (7:2); 2,33 а.е. (10:3); 2,71 а.е. (8:3); 3,03 а.е. (9:4); 3,08 а.е. (11:5); 3,47 а.е. (11:6) и 3,7 а.е. (5:3). Таким образом, именно резонансы управляют распределением больших полуосей орбит астероидов.
Помимо люков, в поясе астероидов имеются уплотнения, известные как группы или кластеры. Опять же, речь, как правило, идет о скоплениях астероидов вблизи некоторого орбитального расстояния, а не об их реальных группах в каких-то конкретных местах. Однако далее мы рассмотрим два настоящих кластера — это ахейцы (греки) и троянцы. Иногда резонансы приводят к образованию не щелей, а скоплений, и зависит это от тех чисел, которыми выражается резонанс, и некоторых других факторов.
Несмотря на то что в общем случае задача трех тел — описать, как движутся три точечные массы под действием гравитации Ньютона, — чрезвычайно тяжело решается математически, кое-какие полезные результаты можно получить, сосредоточившись на особых случаях. Важнейший среди них — это задача «двух с половиной тел», математическая шутка с серьезным смыслом. В этой задаче два тела обладают ненулевыми массами, а третье настолько мало, что его массой можно попросту пренебречь. Примером такой задачи может служить пылинка в поле тяготения Земли и Луны. Основная идея модели заключается в том, что пылинка реагирует на гравитационное воздействие Земли и Луны, но сама она настолько легка, что, по существу, никак не влияет ни на одно, ни на второе тело. Закон всемирного тяготения Ньютона говорит нам, что пылинка все же оказывает влияние, хоть и очень слабое, но влияние это так мало, что при моделировании его можно просто проигнорировать. На практике такой подход работает и с более крупным телом, таким как космический аппарат, небольшая луна или астероид, если промежуток времени, о котором идет речь, достаточно мал, чтобы исключить существенные хаотические эффекты.