Конечно, сегодня мы знаем, что в реальности стояло за наблюдениями Галилея. Сатурн окружен гигантской системой круглых колец. Кольца эти наклонены к эклиптике, так что на некоторых этапах движения Сатурна вокруг Солнца мы видим их фронтально, и тогда кольца кажутся больше планеты, как на рисунке с «ушами». В другие моменты мы видим кольца с ребра и они вообще исчезают — если, конечно, не взять телескоп намного лучше, чем был у Галилея.
Одного этого факта достаточно, чтобы понять: кольца очень тонки по сравнению с планетой, но сегодня мы знаем, что они не просто тонки, а очень-очень тонки; их толщина составляет всего 20 метров[37]
. А вот диаметр колец составляет 360 000 километров. Если бы кольца Сатурна по толщине соответствовали пицце, то размером она была бы со Швейцарию. Галилей ничего об этом не знал, но при этом прекрасно понимал, что Сатурн — планета странная, загадочная и совершенно не похожая на остальные планеты.У Христиана Гюйгенса телескоп был получше, и в 1655 году он написал, что Сатурн «окружен тонким плоским кольцом, нигде к нему не примыкающим и наклоненным к эклиптике». Гук сумел рассмотреть даже тени — как от тела планеты на кольце, так и от кольца на теле планеты; тени помогли ему прояснить вопрос с трехмерной геометрией системы, поскольку показали, какая часть находится впереди, а какая позади.
Являются ли кольца Сатурна твердыми, как поля шляпы, или состоят из мириадов крохотных камешков или льдинок? Если они твердые, то из какого материала сделаны? Если нет, то почему кольца кажутся жесткими, а их форма не меняется?
Ответы на эти и другие вопросы приходили постепенно и были результатом как наблюдений, так и математических расчетов.
Первые наблюдатели видели единственное широкое кольцо. Однако в 1675 году Джованни Кассини сумел провести более качественные наблюдения, выявившие несколько кольцевых щелей, разделяющих кольцо в целом на серию более узких концентрических колец. Самая заметная «прореха» известна теперь как деление, или щель, Кассини. Внутреннее по отношению к ней кольцо называется кольцом B, внешнее — кольцом A. Кассини знал также о более слабом кольце C, располагающемся внутри кольца B. Эти открытия усугубили загадочность объекта, но они же проложили путь к будущему решению этой загадки.
Лаплас в 1787 году указал, что у широкого твердого кольца непременно возникла бы серьезная динамическая проблема. Третий закон Кеплера гласит, что, чем дальше располагается тело от центра планеты, тем медленнее оно обращается вокруг нее. Но внутренний и внешний края твердого кольца вращаются с одинаковой угловой скоростью. Значит, либо внешний край кольца вращается слишком быстро, либо внутренний — слишком медленно, либо то и другое одновременно. Такое несоответствие порождает напряжения в материале кольца, и оно непременно развалится на части под их действием, если только не состоит из необычайно прочного вещества. Лаплас предложил элегантное решение этой проблемы: он предположил, что кольца составлены из большого количества очень узких колечек, вложенных одно в другое. Каждое колечко твердое, но скорости вращения у них снижаются по мере увеличения радиуса. Это позволяло аккуратно обойти проблему внутренних напряжений в материале, поскольку внутренний и внешний края узкого кольца должны вращаться почти с одинаковой скоростью.
Решение элегантное, но ошибочное. В 1859 году специалист по математической физике Джеймс Клерк Максвелл доказал, что вращающееся твердое колечко нестабильно. Лаплас своей гипотезой решил проблему краев, вращающихся с разными скоростями; соответствующие напряжения описывались как силы сдвига, подобные тем, которые возникают между картами в колоде, когда вы, не разбирая, сдвигаете ее часть. Но в игру могли вступить и другие напряжения — к примеру, аналогичные сгибанию колоды карт. Максвелл доказал, что у твердого колечка любые, даже крохотные, возмущения вызванные внешними причинами, разрастаются, заставляя кольцо изгибаться и идти рябью, и что кольцо при этом ломается, как сухая макаронина ломается при любой попытке ее согнуть.
Максвелл сделал вывод, что кольца Сатурна должны состоять из бесчисленных крохотных объектов, каждый из которых независимо от остальных движется по окружности с той скоростью, которая математически соответствует действующей на него силе притяжения. (Не так давно выявились некоторые проблемы, связанные с подобной упрощенной моделью: см. главу 18. Как это скажется на моделях строения колец, пока неясно. Я отложу пока дальнейшее обсуждение этого вопроса и изложу традиционную точку зрения.)