Многие свидетельства, в том числе и математические, указывают на то, что на некоторых ледяных лунах есть подземные океаны, согреваемые приливными силами. По крайней мере в одном таком океане больше воды, чем во всех земных океанах, вместе взятых. Наличие жидкой воды делает эти луны потенциальными вместилищами простых землеподобных форм жизни (см. главу 13). А необычный химический состав Титана делает его потенциальным вместилищем форм жизни, совершенно не похожих на земные.
По крайней мере один астероид имеет собственную крошечную луну — это Ида, вокруг которой обращается миниатюрный Дактиль. Мир лун завораживает; это идеальная площадка для гравитационного моделирования и всевозможных научных рассуждений. И все это восходит к Галилею и звездам Козимо Медичи.
В 1612 году Галилей, определив орбитальные периоды звезд Медичи, предположил, что достаточно точные таблицы их движения обеспечат моряков небесными часами и помогут разрешить навигационную проблему определения долготы. В то время мореходы умели определять широту места, наблюдая Солнце (хотя до точных инструментов вроде секстана было еще далеко), но долготу могли оценивать только по счислению пути, то есть методом очень приблизительного подсчета. Основной практической проблемой было проведение наблюдений с палубы качающегося на волнах судна, и Галилей работал над двумя устройствами для стабилизации телескопа. Метод Галилея использовался на суше, но не на море. А проблему долготы, как известно, решил Джон Харрисон при помощи серии точнейших хронометров, за что и получил в 1773 году призовые деньги.
Спутники Юпитера стали для астрономов настоящей небесной лабораторией, впервые позволив наблюдать со стороны систему из нескольких тел. Ученые составляли таблицы движения этих тел, пытались это движение объяснять и предсказывать теоретически. Один из способов получить точные измерения — пронаблюдать транзит луны по диску планеты, потому что начало и конец транзита — четко определенные события. Затмения, когда луна, наоборот, заходит за планету, определяются не хуже. Джованни Годиерна отметил это в 1656 году, а примерно десятилетием позже Кассини начал длинную серию систематических наблюдений, в ходе которых отмечал также и другие совпадения, к примеру, соединения, при которых две луны выстраиваются в одну линию. К собственному удивлению, он обнаружил, что времена транзитов не согласуются с движением лун по правильным повторяющимся орбитам.
Датский астроном Оле Рёмер подхватил идею Галилея об определении долготы, и в 1671 году вместе с Жаном Пикаром провел наблюдения 140 затмений Ио в Ураниборге под Копенгагеном; в это же время Кассини наблюдал их в Париже. Сравнив временны́е отметки, астрономы вычислили разницу долгот двух обсерваторий. Кассини тогда уже обратил внимание на некоторые странности в наблюдениях и размышлял, не возникают ли они из-за того, что скорость света конечна. Рёмер свел воедино все наблюдения и выяснил, что очередные затмения наступали немного раньше, когда Земля находилась ближе к Юпитеру, и позднее, когда она находилась от него дальше. В 1676 году он сделал в Академии наук сообщение о причине этого явления: «Судя по всему, свету требуется около 10–11 минут, [чтобы пройти] расстояние, равное радиусу земной орбиты». Озвученное число основывалось на тщательных геометрических построениях, но наблюдения были не слишком точными; современное значение для этого интервала — 8 минут 19 секунд. Рёмер не опубликовал свои результаты в виде формальной научной работы, но его лекцию изложил — причем плохо — какой-то неизвестный репортер. Ученое сообщество приняло идею, согласно которой свет имеет конечную скорость, только в 1727 году.
Несмотря на все нерегулярности, Кассини ни разу не удалось наблюдать соединение сразу трех внутренних спутников (Ио, Европы и Ганимеда), когда все они одновременно выстраиваются в линию, совпадающую с лучом зрения; следовательно, что-то, вероятно, не позволяет им это сделать. Орбитальные периоды этих спутников соотносятся друг с другом приблизительно как 1:2:4, и в 1743 году Пер Варгентин, директор Стокгольмской обсерватории, показал, что это соотношение становится поразительно точным, если интерпретировать его заново, на этот раз корректно. Измеряя положение спутников как угол относительно некоторого фиксированного радиуса, он открыл следующую замечательную связь:
угол для Ио — 3 × угол для Европы + 2 × угол для Ганимеда = 180º.
Согласно его наблюдениям, это уравнение выполняется почти точно на длительных периодах времени,