Читаем Математика. Поиск истины. полностью

Различие между первичными и вторичными качествами Декарт иллюстрирует на примере кусочка пчелиного воска. Такой кусочек сладок на вкус, обладает запахом, цветом, формой, размером; он тверд и холоден. Если по нему ударить, то раздается звук. Предположим теперь, что мы положили его возле огня: он утратит свой вкус и запах, изменит цвет и форму, размеры его увеличатся и он станет жидким и горячим. Если по нему ударить, то никакого звука он более не издает. Иначе говоря, все свойства кусочка воска изменятся, и тем не менее перед нами все тот же пчелиный воск. Что же позволяет рассматривать его как один и тот же объект? Разум, выходя за пределы чувственного опыта, признает протяженность и движение воска за основные качества.

Таким образом, согласно Декарту, имеются как бы два мира: огромная математическая машина, существующая в пространстве, и мир мыслящих умов. Воздействие элементов первого мира на второй порождает нематериальные, или вторичные, свойства. Реальный мир — это совокупность поддающихся математическому описанию движений тел в пространстве и времени, и вся Вселенная есть не что иное, как огромная, гармоничная машина, построенная на основе математических принципов.

Даже причину и следствие Декарт объяснял исключительно с точки зрения математики. Причинно-следственная связь для Декарта — не более чем теорема, выводимая из ранее доказанных теорем и аксиом. Новая теорема (следствие) выводится из старой (причины) по схеме, предустановленной аксиомами. Causa sive ratio (причина есть не что иное, как разум). Согласно нашим ощущениям, причина должна по времени предшествовать следствию, и нам кажется, будто причина каким-то образом влечет за собой следствие. Но такое временное упорядочение причины и следствия — не более чем видимость, оно лишь кажется нам, равно как и то, что следствие физически необходимо: и то и другое обусловлено ограниченностью наших чувственных восприятий.

Встав на подобную точку зрения, Декарт был вынужден заняться поиском простых, ясных и отчетливых истин, которые играли бы в его философии такую же роль, какая отводится в математике аксиомам. Результаты его поиска широко известны. Из единственно надежного источника, устоявшего перед сокрушительным натиском скептицизма, — сознания собственного «я» — Декарт извлек суждения, ставшие краеугольными камнями его философии: (а) я мыслю, следовательно, существую; (б) каждое явление должно иметь свою причину; (в) следствие не может предвосхищать причину и (г) идеи совершенства, пространства, времени и движения изначально (врожденно) присущи разуму.

Поскольку люди столь многое подвергают сомнению и так мало знают, они — существа несовершенные. Но из аксиомы (г) следует, что человеческий разум обладает идеей совершенства, в частности идеей всесведущего, всемогущего, вечного и совершенного существа. Откуда берутся такие идеи? Согласно аксиоме (в), идея совершенного существа не может быть выведена логическим путем или измышлена несовершенным человеческим разумом. Источником ее может быть только само существование такого совершенного существа, которое есть Бог. Следовательно, Бог существует.

Совершенный Бог не стал бы вводить нас в заблуждение, поэтому наша интуиция заслуживает доверия: она может служить источником истин. Например, аксиомы математики как суждения, наиболее ясные для нашего разума, должны быть истинами. Теоремы также должны быть истинами, но по другой причине: Бог в силу своего совершенства не допустил бы, что при доказательстве теорем мы впадали в ошибку.

Знание природы, убежден Декарт, надлежит использовать на благо человечеству. Тем, кто утверждает, что математика открывает простор для развития способностей к неординарному мышлению и приносит удовлетворение изобретательностью, проявленной при решении трудных вопросов, Декарт возражал, ссылаясь на новый алгебраический метод (так Декарт называл аналитическую геометрию, созданную независимо им и Пьером Ферма), позволяющий низводить математику до чисто механического искусства, овладеть которым под силу каждому желающему.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука
Загадки, фокусы и развлечения
Загадки, фокусы и развлечения

Вашему вниманию предлагается очередная, четвертая, книга популярного российского ученого и педагога Я. И. Перельмана. Она составлена из двух малоизвестных сейчас произведений 20-х годов прошлого века: «Фокусы и развлечения» и «Ящик загадок и фокусов».Автор предстает перед нами в необычном качестве – мага и чародея. Он дает возможность своему читателю увидеть удивительные фокусы, раскрывая затем их математических секреты. Пораженный читатель видит необычайные и «чудесные» вещи, которые, как потом оказывается, основаны на простых арифметических расчетах.Я. И. Перельман собрал интересные опыты и изумляющие окружающих фокусы, для проделывания которых потребуются самые обыденные предметы, всегда находящиеся под рукой. Все это непременно вызовет интерес ваш и вашего ребенка к точным наукам и скрасит ваш досуг.Фокусы эти «честные и добросовестные», и, проявив сообразительность и умение рассуждать, их сможет проделать каждый. Вы узнаете нечто такое, о чем другие даже не догадываются. А показывая их своим друзьям и знакомым, вы сможете творить чудеса, как профессиональный фокусник. Вы поразите воображение своих зрителей, на их глазах превратившись в математического гения.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют первой половине XX века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Игры, упражнения для детей / Математика / Книги Для Детей / Дом и досуг