Почему нельзя доверять? У перцентилей та же ахиллесова пята, что и у медианы. Вы знаете, сколько величин больше или меньше определенного значения, но не знаете насколько. Возьмем, к примеру, финансовый сектор, где перцентили используются для оценки потерь от инвестиций. Вначале вы прикидываете разброс потенциальных результатов, от триумфа до краха, а затем выбираете перцентиль (обычно 5-й) и называете его «стоимость под риском», или VaR (
5. Процентное изменение
Как вычислить? Прежде чем сообщить, насколько изменилась величина, поделите эту разницу на исходное значение.
Когда использовать? Процентное изменение позволяет посмотреть на вещи в перспективе. Оно определяет прибыли и убытки как части целого. Скажем, моя прибыль составила $100. Если вначале у меня было всего $200, то этот золотой дождь обеспечил рост капитала на 50 %, и я прыгаю от счастья и виляю хвостом, как Снупи. Но, если у меня уже было $20 000, рост моего дохода составляет всего лишь 0,5 %; я ограничиваюсь тем, что вскидываю вверх кулак. Перспектива имеет решающее значение, когда вы наблюдаете рост величины с течением времени. Если бы 70 лет назад американцы услышали, что наш ВВП за год вырос на $500 млрд, они испытали бы благоговейный трепет. Если бы они узнали, что рост составил 3 %, они бы не сильно удивились.
Почему нельзя доверять? О, я всецело за взгляд в перспективе. Но процентное изменение, пытаясь обеспечить контекст, может его, наоборот, уничтожить. Когда я жил в Великобритании, вкусный томатный соус по два фунта за банку иногда продавался со скидкой — в два раза дешевле[145]. В эти дни я как будто выигрывал джекпот: 50 % экономии! Я волок домой дюжину банок — можно заправлять равиоли целый месяц. Вскоре меня пригласили на свадьбу в США. За неделю авиабилеты могли подскочить в цене на 5 %. «Ну и ладно, — сказал я, соглашаясь на повышенную цену. — Это ненамного больше».
Вы понимаете проблему: из-за инстинктов у меня оказалось на пенни ума и на фунт глупости. «Огромная» скидка сэкономила мне 12 фунтов, в то время как «незначительный» рост цен на авиабилеты стоил мне 30 фунтов. Деньги есть деньги, будь то счет в овощной лавке на $20 или ипотека в $200 000. Большие процентные скидки на дешевые товары — ерунда на фоне нескольких процентов подорожания дорогих вещей.
6. Диапазон
Как вычислить? Диапазон — это разница между наибольшей и наименьшей величиной.
Когда использовать? Среднее арифметическое, медиана и мода имеют дело с основной тенденцией: они сводят все разнообразие набора данных до одного репрезентативного значения. Диапазон преследует противоположную цель: не замести разногласия под ковер, а вычислить и показать их, чтобы измерить разброс данных. Заслуга диапазона в его простоте. Мы воспринимаем набор данных как спектр от наименьшего к наибольшему и выясняем ширину этого спектра. Это быстрая и грубая оценка разнообразия.
Почему нельзя доверять? Диапазон учитывает только два куска пирога — наименьший и наибольший. Мы упускаем очень много важной информации, а именно размеры всех прочих кусков. Они близки к максимуму? Близки к минимуму? Распределены равномерно? Диапазон не знает и не хочет выяснять. Чем больше набор данных, тем сомнительнее становится смысл диапазона, потому что он игнорирует миллионы промежуточных значений, чтобы узнать о двух наибольших отклонениях. Узнай инопланетянин о двухметровом диапазоне роста взрослых людей (от рекордно низких 60-сантиметровых до рекордно высоких — 274 см), он был бы крайне разочарован, посетив Землю и выяснив, что все мы уныло средние — примерно от 152 до 183 см.
7. Дисперсия (и среднеквадратичное отклонение{61})
Как вычислить? Среднеквадратичное отклонение показывает, грубо говоря, насколько далеко типичная величина из набора данных отстоит от среднего арифметического.
Если вы хотите приготовить дисперсию у себя на кухне, воспользуйтесь следующим рецептом: (1) найдите среднее арифметическое вашего набора данных; (2) вычислите, насколько далеко каждая величина отстоит от среднего арифметического; (3) возведите эти разности в квадрат; (4) найдите среднее арифметическое квадратов разностей. Среднее арифметическое квадратов отклонений от среднего арифметического и есть дисперсия.