Так как эффективная граница для портфелей с неограниченной суммой весов дает один и тот же портфель с различной величиной рычага, линия CML не может пересекаться или касаться эффективной границы портфелей с неограниченной суммой весов, если же сумма весов ограничена (т.е. равна 1) — это возможно.
Мы рассмотрели несколько способов определения геометрического оптимального портфеля. Например, мы можем рассчитать его эмпирически, что было продемонстрировано в книге
«Формулы управления портфелем» и повторено в первой главе этой книги. В данной главе мы узнали, как с помощью параметрического метода рассчитать портфель при любом значении безрисковой ставки.Теперь, когда мы знаем, как определить геометрический оптимальный портфель, рассмотрим его использование в реальной жизни. Геометрический оптимальный портфель даст нам максимально возможный геометрический рост. В следующей главе мы рассмотрим способы использования этого портфеля при заданных рисковых ограничениях.
Глава 8
Управление риском
Мы познакомились с различными методами расчета оптимального портфеля, с геометрией портфелей и взаимосвязью оптимального количества и оптимального веса. Если торговать портфелем базового инструмента на геометрическом оптимальном уровне и при этом реинвестировать прибыли, то отношение ожидаемого дохода к ожидаемому риску будет максимальным. В этой главе мы поговорим о построении геометрических оптимальных портфелей при заданном уровне риска. Речь пойдет о том, что, какими бы инструментами мы ни торговали, можно выбрать область в спектре риска и добиться максимального геометрического роста для этого уровня риска.
Размещение активов
Следует иметь в виду, что оптимальный портфель, полученный с помощью параметрического метода, будет почти таким же, как и портфель, полученный с помощью эмпирического метода (он подробно рассматривался в главе 1).
В этом случае возможны большие проигрыши по портфелю (т.е. значительные колебания баланса),
и единственная возможность избежать значительных убытков — «разбавить» портфель, т.е. добавить к геометрическому оптимальному портфелю какой-либо безрисковый актив. Вышеописанную процедуру мы назовем размещением активов (asset allocation). Степень риска и надежность любой инвестиции является функцией не объекта инвестиций самого по себе, а функцией размещения активов.Даже портфели, состоящие из акций голубых фишек (blue-chip stocks), находящиеся на уровне неограниченного геометрического оптимального портфеля, могут показать значительные проигрыши. Однако этими акциями следует
торговать именно на таких уровнях для максимизации отношения потенциального геометрического выигрыша к дисперсии (риску), чтобы обеспечить достижение цели за наименьшее время. С этой точки зрения торговля голубыми фишками является такой же рискованной, как и торговля контрактами на свинину, а торговля свининой не менее консервативна, чем торговля надежными акциями. То же можно сказать о портфеле фьючерсов или облигаций.Наша цель заключается в достижении желаемого уровня потенциального геометрического выигрыша, исходя из данной дисперсии (риска), путем комбинирования безрискового актива с торгуемым инструментом, будь то портфель голубых фишек, облигаций или портфель фьючерсных торговых систем.