Читаем Математика управления капиталом. Методы анализа риска для трейдеров и портфельных менеджеров полностью

В ситуации, когда нет рычага (например, портфель акций без заемных средств), вес и количество одно и то же. Однако в ситуации с рычагом (например, портфель фьючерсных рыночных систем), вес и количество отличаются. Идея, которая была впервые изложена в книге «Формулы управления портфелем», состо­ит в том, что мы пытаемся найти оптимальное количество, и оно является функци­ей оптимальных весов. Когда мы рассчитываем коэффициенты корреляции HPR двух рыночных сис­тем с положительными арифметическими математическими ожиданиями, то чаще всего получаем положительные значения. Это происходит потому, что кривые баланса рыночных систем (совокупная текущая сумма дневных измене­ний баланса) стремятся вверх и вправо. Проблема решается следующим обра­зом: для каждой кривой баланса надо определить линию регрессии методом наименьших квадратов (до приведения к текущим ценам, если оно применяет­ся) и рассчитать разность кривой баланса и ее линии регрессии в каждой точке. Затем следует преобразовать уже лишенную тренда кривую баланса в простые дневные изменения баланса. После этого вы можете привести данные к теку­щим ценам (когда это необходимо). Далее, рассчитайте корреляцию по этим уже обработанным данным. Предложенный метод работает в том случае, если вы используете корреляцию дневных изменений баланса, а не цен. Если вы будете использовать цены, то мо­жете получить искаженную картину, хотя очень часто цены и дневные изменения баланса взаимосвязаны (например, в системе пересечения долгосрочной скользя­щей средней). Метод удаления тренда следует всегда применять аккуратно. Разу­меется, дневное AHPR и стандартное отклонение HPR должны всегда рассчиты­ваться по данным, из которых не удален тренд.

Последняя проблема, которая возникает, когда вы удаляете тренд из данных, ка­сается систем, в которых сделки совершаются достаточно редко. Представьте себе две торговые системы, каждая из которых инициирует одну сделку в неделю, причем в разные дни. Коэффициент корреляции между ними может быть только незначи­тельно положительным. Однако когда мы лишаем данные тренда, то получаем очень высокую положительную корреляцию, поскольку их линии регрессии не­много повышаются каждый день, хотя большую часть времени изменение баланса равно нулю. Поэтому разность будет отрицательной. Преобладание дней с незначи­тельной отрицательной разностью между кривой баланса и линией регрессии в обе­их рыночных системах в результате дает неоправданно высокую положительную корреляцию.

Порог геометрической торговли для портфелей

Теперь обратимся к проблеме нахождения порога геометрической торговли для данной комбинации оптимального портфеля. Проблема легко решается, если разделить порог геометрической торговли для каждого компонента на его вес в оптимальном портфеле так же, как мы делили оптимальные f компонентов на их соответствующие веса для получения нового значения, справедливого для компо­нентов оптимального портфеля. Допустим, порог геометрической торговли для Toxico составляет 5100 долларов. Разделив данное значение на его вес в оптималь­ном портфеле, т.е. на 1,025982, мы получим новый измененный порог геометри­ческой торговли:

Порог =$5100/1,025982= $4970,85

Так как вес для Toxico больше 1, то его оптимальное f и порог геометрической тор­говли уменьшатся, поскольку мы делим их значения на этот вес. Если нельзя тор­говать дробной единицей Toxico, мы перейдем на 2 единицы, когда баланс повы­сится до 4970,85 доллара. Вспомните, что наше новое измененное значение f в оптимальном портфеле для Toxico равно 2436,69 доллара ($2500 / 1,025982). Так как данная сумма, умноженная на два, равна 4873,38 доллара, нам следует перейти на торговлю двумя контрактами в этой точке. Однако порог геометрической торговли, который больше чем в два раза превышает величину f в долларах, говорит о том, что не стоит переходить на торговлю 2 единицами до тех пор, пока баланс не достигнет порога геометрической торговли, равного 4970,85 доллара.

Если вы приводите данные к текущим ценам и получаете приведенное опти­мальное f и его побочные продукты, включая порог геометрической торговли, тогда оптимальное f в долларах и порог геометрической торговли будут меняться ежедневно в зависимости от цены закрытия предыдущего дня на основании урав­нения (2.11).


Подведение итогов


Отметим важный факт: структура неограниченного портфеля (для которого сум­ма весов больше 1, a NIC является частью портфеля) неизменна для любого уров­ня Е; единственным отличием является величина заемных средств (величина ры­чага). Для портфелей, лежащих на эффективной границе, когда сумма весов огра­ничена, это не так. Другими словами, для любой точки на неограниченных эффективных границах (AHPR или GHPR) отношения весов различных рыноч­ных систем всегда одинаковы.

Перейти на страницу:

Похожие книги

Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена
Управляй своим боссом. Как стать высокоэффективным лидером менеджеру среднего звена

Руководителям среднего звена часто приходится влиять на подчиненных, равных по должности коллег и даже на босса, и очень важно, чтобы это влияние вело к позитивным переменам. Здесь нужна инициативность, твердость, настойчивость, умение убеждать и немалый энтузиазм. Джон Бальдони, один из самых влиятельных экспертов по вопросам лидерства, по версии Leadership Gurus International, рассказывает, как обрести качества, присущие высокоэффективным лидерам. Благодаря его советам вы стремительно подниметесь по карьерной лестнице и взлетите к самым вершинам. Книга научит вас мыслить стратегически, мотивировать на инновации, объединять людей вокруг общей цели, развивать способности своих сотрудников, конструктивно критиковать и получать откровенную обратную связь от подчиненных, корректно оспаривать мнение вышестоящих руководителей и добиваться своего, стойко переносить неудачи и обращать свои беды в победы.

Джон Бальдони

Деловая литература